Answer:
2 hours: 3968 <u>[I don't understand the $ sign in the answer box]</u>
At midnight: 12137
Step-by-step explanation:
The bacteria are increasing by 15% every hour. So for every hour we will have what we started with, plus 15% more.
The "15% more" can be represented mathematically with (1 + 0.15) or 1.15. Let's call this the "growth factor" and assign it the variable b. b is (1 + percent increase).
Since this per hour, in 1 hour we'll have (3000)*(1.15) = 3450
At the end of the second hour we're increased by 15% again:
(3450)*(1.15) = 3968.
Each additional hour add another (1.15) factor, If we assign a to be the starting population, this can be represented by:
P = a(1.15)^t for this sample that increase 15% per hour. t is time, in hours.
If a represents the growth factor, and P is the total population, the general expression is
P = ab^t
Using this for a = 3000 and b = 1.15, we can find the total population at midnight after starting at 2PM. That is a 10 hour period, so t = 10
P = (3000)*(1.15)^10
P = 12137
Answer:
85
Step-by-step explanation:
0.350 L × n = 30 L . . . . . where n is the number of bottles.
Divide by 0.350:
n = (30 L)/(0.350 L) ≈ 85.7
85 bottles can be filled, and one can be partially filled.
_____
Of course, you know the SI prefix milli- means 1/1000, so 350 mL = 350/1000 L = 0.350 L. When you do the division indicated above, ...
(30 L)/(0.350 L)
the units of liters cancel, and you are left with the number of bottles.
The 18th sequence is - 41
Y = xe^x
dy/dx(e^x x)=>use the product rule, d/dx(u v) = v*(du)/(dx)+u*(dv)/(dx), where u = e^x and v = x:
= e^x (d/dx(x))+x (d/dx(e^x))
y' = e^x x+ e^x
y'(0) = 1 => slope of the tangent
slope of the normal = -1
y - 0 = -1(x - 0)
y = -x => normal at origin