The best way to remember which place is rounded to the nearest 10th, 100th, 1000th, etc., is by counting the number of 0's.
This question wants you to round to the nearest 10th.
How many 0's does 10 have? 1.
So we round one space after the decimal.
This gets us 73.2
Answer:
The answer is negative. Answer choice B
Step-by-step explanation:
Here is the question:
-3^40(5.6/2.1)
According to order of operations, we must do -3^40 first.
Its important to note that -3^40 is different than (-3)^40. In the problem you specified, the ^40 only applies to the 3, not -3. So, first we do 3^40 which is a huge number. And then, we need to add a negative symbol to that huge number. So now we have a massive negative number multiplied by 5.6/2.1, which is obviously positive. Obviously, a negative number multiplied by a positive number is still negative. Therfore, the answer is negative.
I hope my answer helped you :)
If you are happy with my answer please vote Brainliest. Thanks!
Take the augmented matrix,
![\left[\begin{array}{ccc|c}2&1&-3&-20\\1&2&1&-3\\1&-1&5&19\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D2%261%26-3%26-20%5C%5C1%262%261%26-3%5C%5C1%26-1%265%2619%5Cend%7Barray%7D%5Cright%5D)
Swap the row 1 and row 2:
![\left[\begin{array}{ccc|c}1&2&1&-3\\2&1&-3&-20\\1&-1&5&19\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%262%261%26-3%5C%5C2%261%26-3%26-20%5C%5C1%26-1%265%2619%5Cend%7Barray%7D%5Cright%5D)
Add -2(row 1) to row 2, and -1(row 1) to row 3:
![\left[\begin{array}{ccc|c}1&2&1&-3\\0&-3&-5&-14\\0&-3&4&22\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%262%261%26-3%5C%5C0%26-3%26-5%26-14%5C%5C0%26-3%264%2622%5Cend%7Barray%7D%5Cright%5D)
Add -1(row 2) to row 3:
![\left[\begin{array}{ccc|c}1&2&1&-3\\0&-3&-5&-14\\0&0&9&36\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%262%261%26-3%5C%5C0%26-3%26-5%26-14%5C%5C0%260%269%2636%5Cend%7Barray%7D%5Cright%5D)
Multiply through row 3 by 1/9:
![\left[\begin{array}{ccc|c}1&2&1&-3\\0&-3&-5&-14\\0&0&1&4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%262%261%26-3%5C%5C0%26-3%26-5%26-14%5C%5C0%260%261%264%5Cend%7Barray%7D%5Cright%5D)
Add 5(row 3) to row 2:
![\left[\begin{array}{ccc|c}1&2&1&-3\\0&-3&0&6\\0&0&1&4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%262%261%26-3%5C%5C0%26-3%260%266%5C%5C0%260%261%264%5Cend%7Barray%7D%5Cright%5D)
Multiply through row 2 by -1/3:
![\left[\begin{array}{ccc|c}1&2&1&-3\\0&1&0&-2\\0&0&1&4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%262%261%26-3%5C%5C0%261%260%26-2%5C%5C0%260%261%264%5Cend%7Barray%7D%5Cright%5D)
Add -2(row 2) and -1(row 3) to row 1:
![\left[\begin{array}{ccc|c}1&0&0&-3\\0&1&0&-2\\0&0&1&4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%260%260%26-3%5C%5C0%261%260%26-2%5C%5C0%260%261%264%5Cend%7Barray%7D%5Cright%5D)
So we have
.
1) First is an odd function because f(-x)=-f(x)
3) 3d is an even function because f(-x)=f(x)
2) 2d looks like sin function and it is also odd.