Answer:
-1
Step-by-step explanation:
Just substitute your variable in:
(2)(3)-7
Simplify:
2*3=6
6-7=-1
-1 is your answer.
-Stay golden :)
Answer:
p²q³ + pq and pq(pq² + 1)
Step-by-step explanation:
Given
3p²q² - 3p²q³ +4p²q³ -3p²q² + pq
Required
Collect like terms
We start by rewriting the expression
3p²q² - 3p²q³ +4p²q³ -3p²q² + pq
Collect like terms
3p²q² -3p²q² - 3p²q³ +4p²q³ + pq
Group like terms
(3p²q² -3p²q²) - (3p²q³ - 4p²q³ ) + pq
Perform arithmetic operations on like terms
(0) - (-p²q³) + pq
- (-p²q³) + pq
Open bracket
p²q³ + pq
The answer can be further simplified
Factorize p²q³ + pq
pq(pq² + 1)
Hence, 3p²q² - 3p²q³ +4p²q³ -3p²q² + pq is equivalent to p²q³ + pq and pq(pq² + 1)
Answer:
Z scores between -0.995 and 0.995 bound the middle 68% of the area under the stanrard normal curve
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Middle 68%
Between the 50 - (68/2) = 16th percentile and the 50 + (68/2) = 84th percentile.
16th percentile:
X when Z has a pvalue of 0.16. So X when Z = -0.995
84th percentile:
X when Z has a pvalue of 0.84. So X when Z = 0.995.
Z scores between -0.995 and 0.995 bound the middle 68% of the area under the stanrard normal curve
The answer is $53
<span>x - age in years
y - total value in dollars
</span>
If the equation is y = 2x + 15, then after 19 years, the value will be:
x = 19
y = 2x + 15
y = 2 * 19 + 15
y = 38 + 15
y = 53