Answer:
A
Step-by-step explanation:
The function has vertical asymptotes at x=7 and x=-3, so the denominator needs to have factors (x-7) and (x+3).
This eliminates all the options except for A.
I think it is either 10 or 11
Answer:
The angle between the given vectors u and v is ![\theta=cos^{-1}\left[\frac{3}{\sqrt{10}}\right]](https://tex.z-dn.net/?f=%5Ctheta%3Dcos%5E%7B-1%7D%5Cleft%5B%5Cfrac%7B3%7D%7B%5Csqrt%7B10%7D%7D%5Cright%5D)
Step-by-step explanation:
Given vectors are
and 
Now compute the dot product of u and v:




Now find the magnitude of u and v:









To find the angle between the given vectors

![\theta=cos^{-1}\left[\frac{\overrightarrow{u}.\overrightarrow{v}}{|\overrightarrow{u}|\overrightarrow{v}|}\right]](https://tex.z-dn.net/?f=%5Ctheta%3Dcos%5E%7B-1%7D%5Cleft%5B%5Cfrac%7B%5Coverrightarrow%7Bu%7D.%5Coverrightarrow%7Bv%7D%7D%7B%7C%5Coverrightarrow%7Bu%7D%7C%5Coverrightarrow%7Bv%7D%7C%7D%5Cright%5D)
![=cos^{-1}\left[\frac{15}{5\times \sqrt{10}}\right]](https://tex.z-dn.net/?f=%3Dcos%5E%7B-1%7D%5Cleft%5B%5Cfrac%7B15%7D%7B5%5Ctimes%20%5Csqrt%7B10%7D%7D%5Cright%5D)
![=cos^{-1}\left[\frac{15}{5\times \sqrt{10}}\right]](https://tex.z-dn.net/?f=%3Dcos%5E%7B-1%7D%5Cleft%5B%5Cfrac%7B15%7D%7B5%5Ctimes%20%5Csqrt%7B10%7D%7D%5Cright%5D)
![\theta=cos^{-1}\left[\frac{3}{\sqrt{10}}\right]](https://tex.z-dn.net/?f=%5Ctheta%3Dcos%5E%7B-1%7D%5Cleft%5B%5Cfrac%7B3%7D%7B%5Csqrt%7B10%7D%7D%5Cright%5D)
Therefore the angle between the vectors u and v is
![\theta=cos^{-1}\left[\frac{3}{\sqrt{10}}\right]](https://tex.z-dn.net/?f=%5Ctheta%3Dcos%5E%7B-1%7D%5Cleft%5B%5Cfrac%7B3%7D%7B%5Csqrt%7B10%7D%7D%5Cright%5D)
Just factor 48 factors. It has many.
2 * 2 * 12
3 * 2 * 8
4 * 4 * 3
1 * 2 * 24
And the factors given above can have the height and the smallest of the other factors interchanged.
So 3 * 8 * 2 is not the same thing as 3 * 2 * 8 although your teacher may argue that they are the same. All you have to do is put a different face on the bottom to make the height and width different.
Other teachers would say they were different. I have given you what you requested, so I think you are done with this question.