(2x^3)*(5x^2)+(2x^3)*(4)+(1)*(5x^2)+(1)*(4)
10x^5+8x^3+5x^2+4
Answer:
Im not sure but i think its A=1, B=0, and C=9
Step-by-step explanation:
hope this helps
Answer:
D, 75.36 inches.
Step-by-step explanation:
The circumference of a circle is 2*pi*r, where pi=3.14
Using this, 2*3.14*12=75.36 inches.
Answer:
<u>1st pic:</u>
x = 49
top angle = 45
bottom angle = 108
far right angle = 27 degrees
<u>2nd pic:</u>
angle 1 = 88 degrees
angle 2 = 57 degrees
angle 3 = 35 degrees
angle 4 = 145 degrees
Step-by-step explanation:
<u>1st pic:</u>
you can find the far right angle by taking 153 and subtracting it from 180:
⇒ 180 - 153 = 27 degrees
you can find x by the following equation ⇒ x - 4 + 2x + 10 + 27 = 180
combine like terms ⇒ 3x + 33 = 180
subtract 33 from each side ⇒ 3x + 33 - 33 = 180 - 33 ⇒ 3x = 147
divide 3 on each side: ⇒ 
x = 49
to find the top and bottom angles, substitute 49 for x:
top angle : x - 4
49 - 4 = 45 degrees
bottom angle: 2x + 10
2 x 49 + 10 = 108 degrees
<u>2nd pic:</u>
angle 1:
⇒ 180 - 92 = 88 degrees
angle 2:
⇒ 180 - 123 = 57 degrees
angle 3:
⇒ 180 - (88 + 57) = 35 degrees
angle 4:
⇒ 180 - 35 = 145 dgerees
Answer:
They spend at least 69.48 minutes reading the paper.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

For the 10% who spend the most time reading the paper, how much time do they spend?
They spend at least X minutes, in which X is the value of X when Z has a pvalue of 0.90. So it is X when Z = 1.28.




They spend at least 69.48 minutes reading the paper.