1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nalin [4]
3 years ago
5

Help plz help plz help plz help plz​

Mathematics
2 answers:
NARA [144]3 years ago
8 0

Answer:

Step-by-step explanation:

21. 136° and b are supplementary, meaning they have a sum of 180°. This means that 136° + b = 180° → b = 44°.

22. Again, the angles are supplementary which means that 61° + b = 180° → b =   119°.

23. Again, they are supplementary which means that x - 22° + 135° = 180° → x + 113° = 180° → x = 67°.

24. I'm pretty sure you get the gist of this. 6x + 3° + 87° = 180° → 6x + 90° = 180° → 6x = 90° → x = 15°

Hope this helps!

kow [346]3 years ago
7 0

Answer:

139o

Step-by-step explanation:

You might be interested in
Solve x<br> 3x+6=42 please help me get this done
Nikitich [7]

<em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em>

<em>Sol</em><em>ution</em><em>,</em>

<em>3</em><em>x</em><em>+</em><em>6</em><em>=</em><em>4</em><em>2</em>

<em>or</em><em>,</em><em>3</em><em>x</em><em>=</em><em>4</em><em>2</em><em>-</em><em>6</em>

<em>or</em><em>,</em><em> </em><em>3</em><em>x</em><em>=</em><em>3</em><em>6</em>

<em>or</em><em>,</em><em>X=</em><em>3</em><em>6</em><em>/</em><em>3</em>

<em>X=</em><em>1</em><em>2</em>

<em>The</em><em> </em><em> </em><em>value</em><em> </em><em>of</em><em> </em><em>X </em><em>is</em><em> </em><em>1</em><em>2</em><em>.</em>

<em>hope</em><em> </em><em>it</em><em> </em><em>helps</em>

<em>Good</em><em> </em><em>luck</em><em> on</em><em> your</em><em> assignment</em>

<em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em>

4 0
3 years ago
Read 2 more answers
Mr. Jackson invested a sum of money at 6% per year, and 3 times as much at 4%
bogdanovich [222]

Mr. Jackson invested $800 at 6% per year and $ 2400  at 4 % per year

<h3><u>Solution:</u></h3>

Mr. Jackson invested a sum of money at 6% per year, and 3 times as much at 4% per year.

Let the sum invested be ‘a’ and ‘3a’ at 6% per year and 4 % per year respectively

Also, his annual return totaled $144

We can form following equation on the basis of question:-

\begin{array}{l}{\text { Then, } \frac{a \times 6 \times 1}{100}+\frac{3 a \times 4 \times 1}{100}=\$ 144} \\\\ {\frac{6 a}{100}+\frac{12 a}{100}=144} \\\\ {\frac{6 a+12 a}{100}=144} \\\\ {\frac{18 a}{100}=144} \\\\ {18 a=14400} \\\\ {a=14400 \div 18}\end{array}

a = $800

The amount of money invested at 6% = a = 800

The amount of money invested at 4 % = 3a = 3(800) = 2400

So, the amount of money invested at 6% is $800 and the amount of money invested at 4% is $ 2400

4 0
3 years ago
Click an item in the list or group of pictures at the bottom of the problem and, holding the button down, drag it into the corre
Juliette [100K]
Hello,
Please, see the attached files.
Thanks.

3 0
3 years ago
Help with q25 please. Thanks.​
Westkost [7]

First, I'll make f(x) = sin(px) + cos(px) because this expression shows up quite a lot, and such a substitution makes life a bit easier for us.

Let's apply the first derivative of this f(x) function.

f(x) = \sin(px)+\cos(px)\\\\f'(x) = \frac{d}{dx}[f(x)]\\\\f'(x) = \frac{d}{dx}[\sin(px)+\cos(px)]\\\\f'(x) = \frac{d}{dx}[\sin(px)]+\frac{d}{dx}[\cos(px)]\\\\f'(x) = p\cos(px)-p\sin(px)\\\\ f'(x) = p(\cos(px)-\sin(px))\\\\

Now apply the derivative to that to get the second derivative

f''(x) = \frac{d}{dx}[f'(x)]\\\\f''(x) = \frac{d}{dx}[p(\cos(px)-\sin(px))]\\\\ f''(x) = p*\left(\frac{d}{dx}[\cos(px)]-\frac{d}{dx}[\sin(px)]\right)\\\\ f''(x) = p*\left(-p\sin(px)-p\cos(px)\right)\\\\ f''(x) = -p^2*\left(\sin(px)+\cos(px)\right)\\\\ f''(x) = -p^2*f(x)\\\\

We can see that f '' (x) is just a scalar multiple of f(x). That multiple of course being -p^2.

Keep in mind that we haven't actually found dy/dx yet, or its second derivative counterpart either.

-----------------------------------

Let's compute dy/dx. We'll use f(x) as defined earlier.

y = \ln\left(\sin(px)+\cos(px)\right)\\\\y = \ln\left(f(x)\right)\\\\\frac{dy}{dx} = \frac{d}{dx}\left[y\right]\\\\\frac{dy}{dx} = \frac{d}{dx}\left[\ln\left(f(x)\right)\right]\\\\\frac{dy}{dx} = \frac{1}{f(x)}*\frac{d}{dx}\left[f(x)\right]\\\\\frac{dy}{dx} = \frac{f'(x)}{f(x)}\\\\

Use the chain rule here.

There's no need to plug in the expressions f(x) or f ' (x) as you'll see in the last section below.

Now use the quotient rule to find the second derivative of y

\frac{d^2y}{dx^2} = \frac{d}{dx}\left[\frac{dy}{dx}\right]\\\\\frac{d^2y}{dx^2} = \frac{d}{dx}\left[\frac{f'(x)}{f(x)}\right]\\\\\frac{d^2y}{dx^2} = \frac{f''(x)*f(x)-f'(x)*f'(x)}{(f(x))^2}\\\\\frac{d^2y}{dx^2} = \frac{f''(x)*f(x)-(f'(x))^2}{(f(x))^2}\\\\

If you need a refresher on the quotient rule, then

\frac{d}{dx}\left[\frac{P}{Q}\right] = \frac{P'*Q - P*Q'}{Q^2}\\\\

where P and Q are functions of x.

-----------------------------------

This then means

\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + p^2\\\\\frac{f''(x)*f(x)-(f'(x))^2}{(f(x))^2} + \left(\frac{f'(x)}{f(x)}\right)^2 + p^2\\\\\frac{f''(x)*f(x)-(f'(x))^2}{(f(x))^2} +\frac{(f'(x))^2}{(f(x))^2} + p^2\\\\\frac{f''(x)*f(x)-(f'(x))^2+(f'(x))^2}{(f(x))^2} + p^2\\\\\frac{f''(x)*f(x)}{(f(x))^2} + p^2\\\\

Note the cancellation of -(f ' (x))^2 with (f ' (x))^2

------------------------------------

Let's then replace f '' (x) with -p^2*f(x)

This allows us to form  ( f(x) )^2 in the numerator to cancel out with the denominator.

\frac{f''(x)*f(x)}{(f(x))^2} + p^2\\\\\frac{-p^2*f(x)*f(x)}{(f(x))^2} + p^2\\\\\frac{-p^2*(f(x))^2}{(f(x))^2} + p^2\\\\-p^2 + p^2\\\\0\\\\

So this concludes the proof that \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + p^2 = 0\\\\ when y = \ln\left(\sin(px)+\cos(px)\right)\\\\

Side note: This is an example of showing that the given y function is a solution to the given second order linear differential equation.

7 0
3 years ago
Convert the improper fraction below to a mixed number. 13/4
____ [38]

Answer:

3 1/4

Step-by-step explanation:

3 0
3 years ago
Other questions:
  • Ms. cooper drove 18 miles in 1/3 hour what is her speed in miles per hour?
    13·1 answer
  • Solve the system by elimination 1: x+5y-4z=-10, 2x-y+5z=-9, 2x-10y-5z=0 .. . 2. Solve the system by substitution: 2x-y+z=-4, z=5
    11·1 answer
  • 603.8<br> 275.4<br> -_____<br><br> What’s that? But can you put the steps??
    5·1 answer
  • Solve (y/-6)+5=9<br> Help please!! Very stuck.
    10·1 answer
  • Please help what is the area
    12·1 answer
  • PLEASE HELP :)))
    5·1 answer
  • If f(x + 2) = 2x + 3 then find f-'(4).​
    7·1 answer
  • In a recent town election, 1,860 people voted for either candidate A or candidate B for the position of supervisor.
    6·1 answer
  • Determine the intercepts of the line.
    14·1 answer
  • Help its 11:28 due at 11:59 :((
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!