The sum of the given series can be found by simplification of the number
of terms in the series.
- A is approximately <u>2020.022</u>
Reasons:
The given sequence is presented as follows;
A = 1011 + 337 + 337/2 + 1011/10 + 337/5 + ... + 1/2021
Therefore;
The n + 1 th term of the sequence, 1, 3, 6, 10, 15, ..., 2021 is given as follows;
Therefore, for the last term we have;
2 × 2043231 = n² + 3·n + 2
Which gives;
n² + 3·n + 2 - 2 × 2043231 = n² + 3·n - 4086460 = 0
Which gives, the number of terms, n = 2020


Which gives;


Learn more about the sum of a series here:
brainly.com/question/190295
1) 2a = 9b ⇒ 2:9
2) a + b = 3b ⇒ a = 2b ⇒ 1:2
Answers: 2:9 and 1:2
Primeiro multiplica o -2 com tudo que tem dentro do parenteses (chuveirinho) -114 = -5x -2(4x+18)
-2 . 4x = -8x + -2 . 18 = -36 = -8x-36
Agora soma os números com incógnitas (no caso x)
-114 = - 5x - 8x -36
Joga a incógnita do outro, tornando positiva
-114 = -13x - 36
13x -114 = -36
e o 114 do outro lado, ficando positiva também
13x -114 = -36
13x = - 36 + 114
13x = 78
x = 78 /13
x= 6
ESPERO TER AJUDADO :)
Answer:
Step-by-step explanation:
A(-5,-2),B(-2,-2), C(-5,2)
find distance first:d=√(x2-x1)^2+(y^2-y1^2)
AB: 3
BC: 5
AC: 4
perimeter of triangle=3+5+4=12
compliment angle=90
90+34=124
5x+17+x+19=180
x=24