1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nadezda [96]
4 years ago
5

Solve for X. (help) !!!!!

Mathematics
1 answer:
tatyana61 [14]4 years ago
7 0

Answer:

x=45°

Step-by-step explanation:

sum of angles of any polygon=(no of sides-2)180

sum of all angles of a shape with6 sides=(6-2)180=720°

given 4x+2x+3x+2x+3x+90=720

14x+90=720

14x=720-90

14x=630

x=45

hope this helps

plz mark me brainliest

You might be interested in
Are the equations 3x= -9 and 4x= -12 equivalent
Hitman42 [59]
Yes they are equivalent. You get -3 when you try solving the actual equation.
5 0
4 years ago
Divide. write your answer in simplest form<br><br> 4 divide 7/6
kramer
To divide fractions be multiply by the resiprical

4       6        24
--- x ----  = ------
1       7          7

then simplify into a mixed number

3  3/7
4 0
3 years ago
Read 2 more answers
Find the value of x. write your answer in simplest radical form
BartSMP [9]

Answer:

<h2>x = 4 \sqrt{2}</h2>

Step-by-step explanation:

To find the value of x we can use either sine or cosine

Using cosine we have

<h3>\cos(\theta)  =  \frac{adjacent}{hypotenuse}</h3>

From the question

x is the hypotenuse

4 is the adjacent

We have

<h3>\cos45=  \frac{4}{x}  \\ x \cos45 = 4 \\ x =  \frac{4}{ \cos(45) }</h3>

We have the final answer as

<h3>x = 4 \sqrt{2}</h3>

Hope this helps you

8 0
3 years ago
Read 2 more answers
Integrate sin^-1(x) dx<br><br> please explain how to do it aswell ...?
Lynna [10]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/2264253

_______________


Evaluate the indefinite integral:

\mathsf{\displaystyle\int\!sin^{-1}(x)\,dx\qquad\quad\checkmark}


Trigonometric substitution:

\mathsf{\theta=sin^{-1}(x)\qquad\qquad\dfrac{\pi}{2}\le \theta\le \dfrac{\pi}{2}}


then,

\begin{array}{lcl} \mathsf{x=sin\,\theta}&\quad\Rightarrow\quad&\mathsf{dx=cos\,\theta\,d\theta\qquad\checkmark}\\\\\\ &&\mathsf{x^2=sin^2\,\theta}\\\\ &&\mathsf{x^2=1-cos^2\,\theta}\\\\ &&\mathsf{cos^2\,\theta=1-x^2}\\\\ &&\mathsf{cos\,\theta=\sqrt{1-x^2}\qquad\checkmark}\\\\\\ &&\textsf{because }\mathsf{cos\,\theta}\textsf{ is positive for }\mathsf{\theta\in \left[\dfrac{\pi}{2},\,\dfrac{\pi}{2}\right].} \end{array}


So the integral \mathsf{(ii)} becomes

\mathsf{=\displaystyle\int\! \theta\,cos\,\theta\,d\theta\qquad\quad(ii)}


Integrate \mathsf{(ii)} by parts:

\begin{array}{lcl} \mathsf{u=\theta}&\quad\Rightarrow\quad&\mathsf{du=d\theta}\\\\ \mathsf{dv=cos\,\theta\,d\theta}&\quad\Leftarrow\quad&\mathsf{v=sin\,\theta} \end{array}\\\\\\\\ \mathsf{\displaystyle\int\!u\,dv=u\cdot v-\int\!v\,du}\\\\\\ \mathsf{\displaystyle\int\!\theta\,cos\,\theta\,d\theta=\theta\, sin\,\theta-\int\!sin\,\theta\,d\theta}\\\\\\ \mathsf{\displaystyle\int\!\theta\,cos\,\theta\,d\theta=\theta\, sin\,\theta-(-cos\,\theta)+C}

\mathsf{\displaystyle\int\!\theta\,cos\,\theta\,d\theta=\theta\, sin\,\theta+cos\,\theta+C}


Substitute back for the variable x, and you get

\mathsf{\displaystyle\int\!sin^{-1}(x)\,dx=sin^{-1}(x)\cdot x+\sqrt{1-x^2}+C}\\\\\\\\ \therefore~~\mathsf{\displaystyle\int\!sin^{-1}(x)\,dx=x\cdot\,sin^{-1}(x)+\sqrt{1-x^2}+C\qquad\quad\checkmark}


I hope this helps. =)


Tags:  <em>integral inverse sine function angle arcsin sine sin trigonometric trig substitution differential integral calculus</em>

6 0
3 years ago
Help me with this please!
ruslelena [56]
Area of the quarter sector 
Area of the entire circle = pi * r^2
Area of the quarter circle = pi r^2 / 4
r = 9
Area of the quarter circle = pi 9^2 / 4
Area of the quarter circle = pi 81/4 = 20.25 pi

Area of the triangle
Area pf the triangle = 1/2 b*h
b = h = r
r = 9
Area of the triangle = 1/2 9 * 9 
Area of teh triangle = 1/2 81
Area of the triangle = 40.5

Area of the shaded area
The shaded area = Area of the 1/4 circle - area of the triangle
The shaded area = (20.24 pi - 40.5)ft^2

 A <<<<<< Answer.
6 0
3 years ago
Other questions:
  • What is the approximate area of the shaded sector in the circle shown below? 
    9·2 answers
  • Write an expression. That is the equivalent to 3/5 (3y + 15)
    13·1 answer
  • Please help me graph this piecewise function :)
    9·1 answer
  • The current cost of a typical desktop computer is $745. The cost in year 1983 was $1,445 with fewer capabilities. What is the CP
    10·2 answers
  • The function fff is given in three equivalent forms. Which form most quickly reveals the zeros (or "roots") of the function? Cho
    10·1 answer
  • FREE BRAINLEST.
    15·2 answers
  • Write the equation, in standard form, of a polynomial of the least degree with integral
    5·1 answer
  • I need an answer ASAP besties- I’m currently crying rn
    13·1 answer
  • Choose the best answer for the question below
    8·2 answers
  • In the figure below, j || m. Find the values of x and y.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!