Adding what rational expressions?
Answer:
(-3, -3)
Step-by-step explanation:
1.) Rewrite the second equation so 3y is on one side of the equation:
3y=6+5x
2.) Substitute the given value of 3y (replacing 3y with 6+5x, since we know they equal each other) into the equation 17x=-60-3y
Should end up with this:
17x=-60-(6+5x)
3.) Solve 17x=-60-(6+5x)
Calculate Difference: 17x=-66-5x
Combine Like Terms: 22x = -66
Divided both sides by 22 to isolate and solve for x: -3
So We know x=-3, now we got to find the y value. We can use either the first or second equation to find y value, so lets use the second.
3y=6+5x
1.) We know that x=-3, so we can simply substitute x in the equation
3y=6+5x with -3
3y=6+5(-3)
2.) Solve 3y=6+5(-3)
Combine Like Term: 3y=6+-15
Combine Like Term Even More: 3y= -9
Divide by 3 on both sides to isolate and solve for y: y=-3
So now we know y=-3 and once again we know x=-3, so if we format that
(-3,-3)
^ ^
x y
Answer:
The area of APC is 70m². The area of triangle PMC is 35m².
Step-by-step explanation:
Let the area of triangle ABC be x.
It is given that AM is median, it means AM divides the area of triangle in two equal parts.
.....(1)
The point P is the midpoint of AB, therefore the area of APC and BPC are equal.
......(2)
The point P is midpoint of AB therefore the line PM divide the area of triangle ABM in two equal parts. The area of triangle APM and BPM are equal.
.....(3)
The area of triangle APM is 35m².



Therefore the area of triangle ABC is 140m².
Using equation (2).



Therefore the area of triangle APC is 70m².
Using equation (3), we can say that the area of triangle BPM is 35m² and by using equation (2), we can say that the area of triangle BPC is 70m².



Therefore the area of triangle PMC is 35m².
Answer: -1
Step-by-step explanation: