286 ÷ 5 1/2 hours = 286 ÷ 5.5 = 52 final answer
Answer:none of the options is correct
the answer is (5,0)
Step-by-step explanation:
Answer:
N(AUC∩B') = 121
The number of students that like Reese's Peanut Butter Cups or Snickers, but not Twix is 121
Step-by-step explanation:
Let A represent snickers, B represent Twix and C represent Reese's Peanut Butter Cups.
Given;
N(A) = 150
N(B) = 204
N(C) = 206
N(A∩B) = 75
N(A∩C) = 100
N(B∩C) = 98
N(A∩B∩C) = 38
N(Total) = 500
How many students like Reese's Peanut Butter Cups or Snickers, but not Twix;
N(AUC∩B')
This can be derived by first finding;
N(AUC) = N(A) + N(C) - N(A∩C)
N(AUC) = 150+206-100 = 256
Also,
N(A∩B U B∩C) = N(A∩B) + N(B∩C) - N(A∩B∩C) = 75 + 98 - 38 = 135
N(AUC∩B') = N(AUC) - N(A∩B U B∩C) = 256-135 = 121
N(AUC∩B') = 121
The number of students that like Reese's Peanut Butter Cups or Snickers, but not Twix is 121
See attached venn diagram for clarity.
The number of students that like Reese's Peanut Butter Cups or Snickers, but not Twix is the shaded part
If you are given y = (-3/7)x - 2 and you want it in the form Ax+By = C, then...
y = (-3/7)x-2
7*y = 7*( (-3/7)x-2) ... multiply both sides by 7
7y = -3x-14 ... distribute and multiply
7y+3x = -3x-14+3x ... add 3x to both sides
3x+7y = -14
The standard form equation is 3x+7y = -14
Answer:
Step-by-step explanation:
4) parallel because 118° is a supplement to 62° and the corresponding angles are both 118°
5) NOT parallel. The labeled angles sum to 120° and would sum to 180° for parallel lines.
6) NOT parallel. see pic.
If parallel, extending a line to intersect ℓ₁ makes an opposite internal angle which would also be 48°. The created triangle would have its third angle at 180 - 90 - 48 = 42° which is opposite a labeled 48° angle, which is false, so the lines cannot be parallel
7)
b = 78° as it corresponds with a labeled angle above it
a = 180 - 78 = 102° as angles along a line from a common vertex sum to 180
f = is an opposite angle to 180 - 78 - 44 = 58° as angles along a line from a common vertex sum to 180
e = 180 - 90 - 64 = 26° as angles along a line from a common vertex sum to 180
c = 58° as it corresponds with f
d = 180 - 58 = 122° as angles along a line from a common vertex sum to 180