9514 1404 393
Answer:
- Constraints: x + y ≤ 250; 250x +400y ≤ 70000; x ≥ 0; y ≥ 0
- Objective formula: p = 45x +50y
- 200 YuuMi and 50 ZBox should be stocked
- maximum profit is $11,500
Step-by-step explanation:
Let x and y represent the numbers of YuuMi and ZBox consoles, respectively. The inventory cost must be at most 70,000, so that constraint is ...
250x +400y ≤ 70000
The number sold will be at most 250 units, so that constraint is ...
x + y ≤ 250
Additionally, we require x ≥ 0 and y ≥ 0.
__
A profit of 295-250 = 45 is made on each YuuMi, and a profit of 450-400 = 50 is made on each ZBox. So, if we want to maximize profit, our objective function is ...
profit = 45x +50y
__
A graph is shown in the attachment. The vertex of the feasible region that maximizes profit is (x, y) = (200, 50).
200 YuuMi and 50 ZBox consoles should be stocked to maximize profit. The maximum monthly profit is $11,500.
This is a simple percentage question. 6/100 * 1000 = 60 people have forgotten
68 + (x / 54) = 72 68 + (x / 54) • 54 = 72 • 54 68 + x = 72 • 54 68 + x = 3,888 68 + x - 68 = 3,888 - 68 x = 3,888 - 68 x = 3,820 I'm pretty sure this is right. Good luck!
396.9
.........................
Answer:
72 degrees
Step-by-step explanation:
2x+3x=180
5x=180
x=36
36*2=72