It’s s=-2 and s=2 because the absolute value makes both of the numbers be positive so either way it’s going to be 2+4=6
You should have drawn1 - x-axis and y-axis in light pencil.2 - graphed a down-facing parabola with the top of the frown on the y-axis at y = 2. It should be crossing the x-axis at ±√2. This should be in dark pencil or another color.3 - In dark pencil or a completely new color, draw a rectangle with one of the horizontal sides sitting on top of the x-axis and the other horizontal side touching the parabola at each of the top corners of the rectangle. The rectangle will have half of its base in the positive x-axis and the other half on the negative x-axis. It should be split right down the middle by the y-axis. So each half of the base we will say is "x" units long. So the whole base is 2x units long (the x units to the right of the y-axis, and the x units to the left of the y-axis) I so wish I could draw you this picture... In the vertical direction, both vertical edges are the same length and we will call that y. The area that we want to maximize has a width 2x long, and a height of y tall. So A = 2xy This is the equation we want to maximize (take derivative and set it = 0), we call it the "primary equation", but we need it in one variable. This is where the "secondary equation" comes in. We need to find a way to change the area formula to all x's or all y's. Since it is constrained to having its height limited by the parabola, we could use the fact that y=2 - x2 to make the area formula in only x's. Substitute in place of the "y", "2 - x2" into the area formula. A = 2xy = 2x(2 - x2) then simplify A = 4x - 2x3 NOW you are ready to take the deriv and set it = 0 dA/dx = 4 - 6x2 0 = 4 - 6x2 6x2 = 4 x2 = 4/6 or 2/3 So x = ±√(2/3) Width remember was 2x. So the width is 2[√(2/3)]Height is y which is 2 - x2 = 2 - 2/3 =4/3
24 foot board... I added a picture for the break down
Hey!
------------------------------------------------
Solution:
We can get two different ways of 1:6 by add +1:+6.
1 + 1 = 6 + 6
2:12
2 + 1 = 12 + 6
3:18
------------------------------------------------
Answer:
2:12 and 3:18
------------------------------------------------
Hope This Helped! Good Luck!
Answer:


Step-by-step explanation:
Let the quotient be represented by 'Q'.
Given:
The difference of a number 'y' and 16 is 
Quotient is the answer that we get on dividing two terms. Here, the first term is 40 and the second term is
. So, we divide both these terms to get an expression for 'Q'.
The quotient of 40 and
is given as:

Now, we need to find the quotient when
. Plug in 20 for 'y' in the above expression and evaluate the quotient 'Q'. This gives,

Therefore, the quotient is 10, when the value of 'y' is 20.