1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yuki888 [10]
3 years ago
13

The diagonals of a kite have lengths of x inches and 18x inches. The area of the kite is given by A=9x^2. Identify the equation(

s) that represent the value of x
Mathematics
1 answer:
Firdavs [7]3 years ago
5 0

Answer:

Step-by-step explanation:

You might be interested in
Consider the three points ( 1 , 3 ) , ( 2 , 3 ) and ( 3 , 6 ) . Let ¯ x be the average x-coordinate of these points, and let ¯ y
loris [4]

Answer:

m=\dfrac{3}{2}

Step-by-step explanation:

Given points are: ( 1 , 3 ) , ( 2 , 3 ) and ( 3 , 6 )

The average of x-coordinate will be:

\overline{x} = \dfrac{x_1+x_2+x_3}{\text{number of points}}

<u>1) Finding (\overline{x},\overline{y})</u>

  • Average of the x coordinates:

\overline{x} = \dfrac{1+2+3}{3}

\overline{x} = 2

  • Average of the y coordinates:

similarly for y

\overline{y} = \dfrac{3+3+6}{3}

\overline{y} = 4

<u>2) Finding the line through (\overline{x},\overline{y}) with slope m.</u>

Given a point and a slope, the equation of a line can be found using:

(y-y_1)=m(x-x_1)

in our case this will be

(y-\overline{y})=m(x-\overline{x})

(y-4)=m(x-2)

y=mx-2m+4

this is our equation of the line!

<u>3) Find the squared vertical distances between this line and the three points.</u>

So what we up till now is a line, and three points. We need to find how much further away (only in the y direction) each point is from the line.  

  • Distance from point (1,3)

We know that when x=1, y=3 for the point. But we need to find what does y equal when x=1 for the line?

we'll go back to our equation of the line and use x=1.

y=m(1)-2m+4

y=-m+4

now we know the two points at x=1: (1,3) and (1,-m+4)

to find the vertical distance we'll subtract the y-coordinates of each point.

d_1=3-(-m+4)

d_1=m-1

finally, as asked, we'll square the distance

(d_1)^2=(m-1)^2

  • Distance from point (2,3)

we'll do the same as above here:

y=m(2)-2m+4

y=4

vertical distance between the two points: (2,3) and (2,4)

d_2=3-4

d_2=-1

squaring:

(d_2)^2=1

  • Distance from point (3,6)

y=m(3)-2m+4

y=m+4

vertical distance between the two points: (3,6) and (3,m+4)

d_3=6-(m+4)

d_3=2-m

squaring:

(d_3)^2=(2-m)^2

3) Add up all the squared distances, we'll call this value R.

R=(d_1)^2+(d_2)^2+(d_3)^2

R=(m-1)^2+4+(2-m)^2

<u>4) Find the value of m that makes R minimum.</u>

Looking at the equation above, we can tell that R is a function of m:

R(m)=(m-1)^2+4+(2-m)^2

you can simplify this if you want to. What we're most concerned with is to find the minimum value of R at some value of m. To do that we'll need to derivate R with respect to m. (this is similar to finding the stationary point of a curve)

\dfrac{d}{dm}\left(R(m)\right)=\dfrac{d}{dm}\left((m-1)^2+4+(2-m)^2\right)

\dfrac{dR}{dm}=2(m-1)+0+2(2-m)(-1)

now to find the minimum value we'll just use a condition that \dfrac{dR}{dm}=0

0=2(m-1)+2(2-m)(-1)

now solve for m:

0=2m-2-4+2m

m=\dfrac{3}{2}

This is the value of m for which the sum of the squared vertical distances from the points and the line is small as possible!

5 0
3 years ago
Choose the property used to rewrite the expression.
Alex73 [517]

The property used to rewrite the given expression is product property.

Answer: Option A

<u>Step-by-step explanation:</u>

Given equation:

                          \log _{2} 10+\log _{2} 4=\log _{2} 40

The sum of the two logarithms of two quantities (on the same basis) corresponds to the logarithm of their product on the same basis. The product log is equal to the log’s sum of the factors.

                                \log _{b}(x \times y)=\log _{b} x+\log _{b} y

There are several rules that you can use to solve logarithmic equations. One of these guidelines is the logarithmic products rule that you can use to differentiate complex protocols in different ways. Different values that can be valuable are the quota principle and the logarithm rule. The logarithmic products rule is essential and is regularly used in analysis to control logs and simplify baseline conditions.

4 0
3 years ago
Mystery Boxes: Breakout Rooms
ollegr [7]

Answer:

\begin{array}{ccccccccccccccc}{1} & {3} & {4} & {12} & {15} & {18}& {18 } & {26} & {29} & {30} & {32} & {57} & {58} & {61} \\ \end{array}

Step-by-step explanation:

Given

\begin{array}{ccccccccccccccc}{1} & {[ \ ]} & {4} & {[ \ ] } & {15} & {18}& {[ \ ] } & {[ \ ]} & {29} & {30} & {32} & {[ \ ]} & {58} & {[ \ ]} \\ \end{array}

Required

Fill in the box

From the question, the range is:

Range = 60

Range is calculated as:

Range =  Highest - Least

From the box, we have:

Least = 1

So:

60 = Highest  - 1

Highest = 60 +1

Highest = 61

The box, becomes:

\begin{array}{ccccccccccccccc}{1} & {[ \ ]} & {4} & {[ \ ] } & {15} & {18}& {[ \ ] } & {[ \ ]} & {29} & {30} & {32} & {[ \ ]} & {58} & {61} \\ \end{array}

From the question:

IQR = 20 --- interquartile range

This is calculated as:

IQR = Q_3 - Q_1

Q_3 is the median of the upper half while Q_1 is the median of the lower half.

So, we need to split the given boxes into two equal halves (7 each)

<u>Lower half:</u>

\begin{array}{ccccccc}{1} & {[ \ ]} & {4} & {[ \ ] } & {15} & {18}& {[ \ ] } \\ \end{array}

<u>Upper half</u>

<u></u>\begin{array}{ccccccc}{[ \ ]} & {29} & {30} & {32} & {[ \ ]} & {58} & {61} \\ \end{array}<u></u>

The quartile is calculated by calculating the median for each of the above halves is calculated as:

Median = \frac{N + 1}{2}th

Where N = 7

So, we have:

Median = \frac{7 + 1}{2}th = \frac{8}{2}th = 4th

So,

Q_3 = 4th item of the upper halves

Q_1= 4th item of the lower halves

From the upper halves

<u></u>\begin{array}{ccccccc}{[ \ ]} & {29} & {30} & {32} & {[ \ ]} & {58} & {61} \\ \end{array}<u></u>

<u></u>

We have:

Q_3 = 32

Q_1 can not be determined from the lower halves because the 4th item is missing.

So, we make use of:

IQR = Q_3 - Q_1

Where Q_3 = 32 and IQR = 20

So:

20 = 32 - Q_1

Q_1 = 32 - 20

Q_1 = 12

So, the lower half becomes:

<u>Lower half:</u>

\begin{array}{ccccccc}{1} & {[ \ ]} & {4} & {12 } & {15} & {18}& {[ \ ] } \\ \end{array}

From this, the updated values of the box is:

\begin{array}{ccccccccccccccc}{1} & {[ \ ]} & {4} & {12} & {15} & {18}& {[ \ ] } & {[ \ ]} & {29} & {30} & {32} & {[ \ ]} & {58} & {61} \\ \end{array}

From the question, the median is:

Median = 22 and N = 14

To calculate the median, we make use of:

Median = \frac{N + 1}{2}th

Median = \frac{14 + 1}{2}th

Median = \frac{15}{2}th

Median = 7.5th

This means that, the median is the average of the 7th and 8th items.

The 7th and 8th items are blanks.

However, from the question; the mode is:

Mode = 18

Since the values of the box are in increasing order and the average of 18 and 18 do not equal 22 (i.e. the median), then the 7th item is:

7th = 18

The 8th item is calculated as thus:

Median = \frac{1}{2}(7th + 8th)

22= \frac{1}{2}(18 + 8th)

Multiply through by 2

44 = 18 + 8th

8th = 44 - 18

8th = 26

The updated values of the box is:

\begin{array}{ccccccccccccccc}{1} & {[ \ ]} & {4} & {12} & {15} & {18}& {18 } & {26} & {29} & {30} & {32} & {[ \ ]} & {58} & {61} \\ \end{array}

From the question.

Mean = 26

Mean is calculated as:

Mean = \frac{\sum x}{n}

So, we have:

26= \frac{1 + 2nd + 4 + 12 + 15 + 18 + 18 + 26 + 29 + 30 + 32 + 12th + 58 + 61}{14}

Collect like terms

26= \frac{ 2nd + 12th+1 + 4 + 12 + 15 + 18 + 18 + 26 + 29 + 30 + 32 + 58 + 61}{14}

26= \frac{ 2nd + 12th+304}{14}

Multiply through by 14

14 * 26= 2nd + 12th+304

364= 2nd + 12th+304

This gives:

2nd + 12th = 364 - 304

2nd + 12th = 60

From the updated box,

\begin{array}{ccccccccccccccc}{1} & {[ \ ]} & {4} & {12} & {15} & {18}& {18 } & {26} & {29} & {30} & {32} & {[ \ ]} & {58} & {61} \\ \end{array}

We know that:

<em>The 2nd value can only be either 2 or 3</em>

<em>The 12th value can take any of the range 33 to 57</em>

Of these values, the only possible values of 2nd and 12th that give a sum of 60 are:

2nd = 3

12th = 57

i.e.

2nd + 12th = 60

3 + 57 = 60

So, the complete box is:

\begin{array}{ccccccccccccccc}{1} & {3} & {4} & {12} & {15} & {18}& {18 } & {26} & {29} & {30} & {32} & {57} & {58} & {61} \\ \end{array}

6 0
3 years ago
A geometry class has a total of 27 students. The number of females is 13 less than the number of males. How many males and how m
boyakko [2]

Answer:

20 males and 7 females

Step-by-step explanation:

Let's say the number of females is x and the number of males is y.

We know that the total number of students is 27, which can also be written as x + y. So, these two expressions are equal: x + y = 27.

There are 13 fewer females than males, so: x = y - 13.

Now, we can use substitution to solve this system of linear equations.

Since x = y - 13, we can plug in y - 13 for x in x + y = 27:

x + y = 27 ⇒ (y - 13) + y = 27 ⇒ 2y - 13 = 27 ⇒ 2y = 40 ⇒ y = 20

Then, we use this value of y to solve for x:

x = y - 13 = 20 - 13 = 7

Thus, there are 20 males and 7 females.

Hope this helps!

6 0
3 years ago
Read 2 more answers
Which choices are equations for the line shown below? Check all that apply.
nata0808 [166]

Answer:

c and b

Step-by-step explanation:

7 0
3 years ago
Other questions:
  • How many 2/3 are in 3 1/3
    5·1 answer
  • Analyze the graph of the exponential decay function the intial value is
    12·1 answer
  • Find the difference of(ab+8a+1)-(-6ab+4)
    8·1 answer
  • I need help with this
    10·1 answer
  • Which describes the process that could be used as the first step in solving this equation? 6x = 4 + 5(x + 8) A) Combine like ter
    10·2 answers
  • Which pairs of polygons are congruent?
    15·1 answer
  • Find the vertices of the hyperbola. Enter the smallest coordinate first.
    8·1 answer
  • What is the area of the parallelogram (a) 168s sq inches b) 140 sq inches c) 130 sq inches d) 120 sq inches
    11·1 answer
  • When the distributive property is used to solve the equation 5(2 + 4) = 32 - 5, what is the next step?
    9·1 answer
  • Im giving 20 points, can someone help?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!