1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kkurt [141]
3 years ago
7

Ottawa is the capital city of Canada. The population of Ottawa is 890,000. This population is 2.5% of the total population of Ca

nada. What is the total population of Canada?
Mathematics
1 answer:
alexdok [17]3 years ago
4 0

Answer:

find the population of each city

Step-by-step explanation:

You might be interested in
14 cm<br> 6 cm<br> 4 cm<br> What is the surface area
Illusion [34]

Answer:

336cm

Step-by-step explanation:

14cm x 6cm x 4cm = 336cm

4 0
3 years ago
A cube-shaped hole is cut in a rectangular prism as shown below.
IgorC [24]
Surface area of the prism is 2xy+2xz+2yz 
I think, we can cut hole on the face of the prisma 40x30, and size of the whole will be 5X5X5
hole increases surface area. If side of the cube is "a", then a^2 is the area of the one face of the cube.  
when we are doing the hole, we remove 2 faces and add 4 more faces, so 
 2xy+2xz+2yz-2a^2+4a^2=  2xy+2xz+2yz+2a^2
So, 2*5*40+2*5*30+2*40*30+2*5^2=3150 cm^2
 i hope it helps, it is what i can come up with now



6 0
4 years ago
Read 2 more answers
Surface area of a solid figure can be found by multiplying the area of the base by the height of the figure.
iVinArrow [24]

Answer:

Surface area of a solid figure can be found by multiplying the area of the base by the height of the figure.

<em><u>it's false </u></em>

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Find the cosine of ZE.<br> 37<br> E<br> D<br> 35<br> 12<br> с
Dvinal [7]

Step-by-step explanation:

\cos(e)  =  \frac{12}{37}  = 0.324

5 0
3 years ago
The indicated function y1(x) is a solution of the associated homogeneous equation. Use the method of reduction of order to find
9966 [12]

Answer:

<em>The particular integral of given differential equation</em>

<em>                  </em>y_{p} = \frac{1}{4} ( x - (\frac{-5}{4} ) (1))<em></em>

<em> General solution of given differential equation</em>

<em>      </em>y = y_{c} + y_{p}<em></em>

<em>  </em>Y (x) = C_{1} e^{x} + C_{2} e^{4x} + \frac{1}{4} ( x + (\frac{5}{4} ))<em></em>

<em></em>

Step-by-step explanation:

<u><em>Step(i)</em></u>:-

Given Differential equation  y'' − 5 y' + 4 y = x

Given equation in operator form

        D²y - 5 Dy +  4 y = x

⇒     ( D² - 5 D +  4 ) y =x

⇒    f(D) y = Q

where  f(D) = D² - 5 D +  4 and Q(x) = x

<em>The auxiliary equation  f(m) =0</em>

<em>           m²-5 m + 4 =0</em>

         m² - 4 m - m + 4 =0

        m ( m -4 ) -1 ( m-4) =0

         (m - 1) =0   and ( m-4) =0

        <em> m = 1 and m =4</em>

<em>The complementary function </em>

<em></em>Y_{c} = C_{1} e^{x} + C_{2} e^{4x}<em></em>

<u><em>Step(ii)</em></u>:-

<u><em>particular integral</em></u>

<em>Particular integral</em>

<em>     </em>y_{p} = \frac{1}{f(D)} Q(x) = \frac{1}{D^{2}  - 5 D +  4} X<em></em>

<em>taking common '4' </em>

<em>                          </em>= \frac{1}{4(1 +  (\frac{D^{2}  - 5 D}{4} ))} X<em></em>

<em>                         </em>

<em>                           </em>=\frac{1}{4}  (1 + (\frac{D^{2} -5D}{4})^{-1} )} X<em></em>

<em>applying binomial expression</em>

<em>      ( 1 + x )⁻¹    = 1 - x + x² - x³ +.....       </em>

<em>                          </em>=\frac{1}{4}  (1 - (\frac{D^{2} -5D}{4}) +((\frac{D^{2} -5D}{4})^{2} -...} )X<em></em>

<em>Now simplifying and we will use notation D = </em>\frac{dy}{dx}<em></em>

<em>                        </em>=\frac{1}{4}  (x - (\frac{D^{2} -5D}{4})x +((\frac{D^{2} -5D}{4})^{2}(x) -...}<em></em>

<em>Higher degree terms are neglected</em>

<em>                     </em>=\frac{1}{4}  (x - (\frac{ -5 D}{4}) x)<em></em>

<em>The particular integral of given differential equation</em>

<em>                  </em>y_{p} = \frac{1}{4} ( x - (\frac{-5}{4} ) (1))<em></em>

<u><em>Final answer</em></u><em>:-</em>

<em>          General solution of given differential equation</em>

<em>      </em>y = y_{c} + y_{p}<em></em>

<em>  </em>Y (x) = C_{1} e^{x} + C_{2} e^{4x} + \frac{1}{4} ( x + (\frac{5}{4} ))<em></em>

<em></em>

<em></em>

<em>         </em>

<em> </em>

     

4 0
3 years ago
Other questions:
  • Given: ∠CBA ≅ ∠FBA; ∠CAB ≅ ∠FAB Prove: ΔBCA ΔBFA Complete the missing parts of the paragraph proof. Proof: We know that angle CB
    15·2 answers
  • If you subtract 13 from my number and multiply the difference by -2 ​, the result is ​-44." What is ​'s ​number
    11·1 answer
  • What is the root of the function f(x)=3x^2-21x?
    6·1 answer
  • Ellie has already taken 2 quizzes during past quarter, and she expects to have 3 quizzes during each week of this quarter. After
    9·1 answer
  • Create a word problem that could be used to describe 8x=48
    13·1 answer
  • NEED DONE ASAP 20 PTS!!!!!!
    8·2 answers
  • Please help me with this​
    14·1 answer
  • What is the measurement of angle A? ​
    10·1 answer
  • X2 + 2x + 3 if x = 2​
    6·1 answer
  • Please show workings.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!