Answer:
<em>Exceptions to Mendel's principles:
</em>
Does exceptions mean that Mendel was "wrong"? The answer is "NO". It means that we know more today about diseases, genes, and heredity than compared to what he expalined 150 years ago. Here I have summerized the exceptions with examples:
<em>Incomplete dominance</em>: When an organism is heterozygous for a trait and both genes are expressed but not completely.
<em>Example</em><em>:</em> SnapDragon Flowers
<em>Codominance</em>: When 2 different alleles are present and both alleles are expressed.
<em>Example</em>: Black Feathers + Whites feathers --> Black and white speckled feathers
<em>Multiple alleles</em>: Three or more alternative forms of a gene (alleles) that can occupy the same locus.
Example: Bloodtype
<em>Polygenic traits</em>: more than one gene controls a particular phenotype
Example: human height, Hair color, weight, and eye, hair and skin color.
Ok this is going to be a long answer lol
Translation is the process by which a protein is synthesized from the information contained in a molecule of messenger RNA (mRNA). During translation, an mRNA sequence is read using the genetic code, which is a set of rules that defines how an mRNA sequence is to be translated into the 20-letter code of amino acids, which are the building blocks of proteins.
During transcription, the DNA of a gene serves as a template for complementary base-pairing, and an enzyme called RNA polymerase II catalyzes the formation of a pre-mRNA molecule, which is then processed to form mature mRNA
I hope this helps :)
The pentose sugar on RNA is called ribose. (a trick to remember it is that the "R" in RNA stands for ribo)
Hope this helps :)
Answer:
Egg and sperm cells have to have half the number of chromosomes as in body cells so when they combine to form a zygote, the zygote is diploid and has the correct number of chromosomes. This explanation describes why meiosis produces haploid cells.
Explanation:
Meiosis is a type of cell division in which four haploid cells are produced from a diploid parent cell having two copies of each chromosome, where the number of chromosomes in the parent cell is reduced to half by undergoing DNA replication and nuclear division. Diploid cell contains two copies of each chromosome, one inherited from mother and the other from father while haploid cell contains only one copy of each chromosome. Examples of diploid cells (somatic cells) are skin, blood, muscle cells etc. Eggs or ovum (female gametes) and sperm (male gametes) are haploid reproductive cells. If the total number of chromosomes in a diploid cell is represented as '2n', then the number of chromosomes in a haploid cell is 'n'. During the fertilization process in an organism, the correct number of chromosomes is restored when the haploid male and female gamete combined to form a single diploid zygote, which is the first developmental stage of an organism.