Answer:
2/5
Step-by-step explanation:
By applying <em>reflection</em> theory and constructing a <em>geometric</em> system of two <em>proportional right</em> triangles, the height of the stainless steel globe is approximately 140 ft.
<h3>How to estimate the height of the stainless steel globe</h3>
By physics we know that both the angle of incidence and the angle of reflection are same. Thus, we have a <em>geometric</em> system formed by two <em>proportional right</em> triangles:
5.6 ft / 4 ft = h / 100 ft
h = (5.6 ft × 100 ft) / 4ft
h = 140 ft
By applying <em>reflection</em> theory and constructing a <em>geometric</em> system of two <em>proportional right</em> triangles, the height of the stainless steel globe is approximately 140 ft.
To learn more on geometry: brainly.com/question/16836548
#SPJ1
In summary. The graph of each equation is a straight line, m is the gradient of the line and c is the y-intercept. Conversely, if a straight line has gradient m and y-intercept c it has equation y = mx + c.
Answer:
2.7
Step-by-step explanation:
ratios help
2.5 : 5.8 :: x : 6.2
2.5/5.8 = x/6.2
solve for x :
x = approx. 2.7
10x10x10x10, you have to multiply 10 by 10 four times, since it's 10 to the power of 4.