I use the sin rule to find the area
A=(1/2)a*b*sin(∡ab)
1) A=(1/2)*(AB)*(BC)*sin(∡B)
sin(∡B)=[2*A]/[(AB)*(BC)]
we know that
A=5√3
BC=4
AB=5
then
sin(∡B)=[2*5√3]/[(5)*(4)]=10√3/20=√3/2
(∡B)=arc sin (√3/2)= 60°
now i use the the Law of Cosines
c2 = a2 + b2 − 2ab cos(C)
AC²=AB²+BC²-2AB*BC*cos (∡B)
AC²=5²+4²-2*(5)*(4)*cos (60)----------- > 25+16-40*(1/2)=21
AC=√21= 4.58 cms
the answer part 1) is 4.58 cms
2) we know that
a/sinA=b/sin B=c/sinC
and
∡K=α
∡M=β
ME=b
then
b/sin(α)=KE/sin(β)=KM/sin(180-(α+β))
KE=b*sin(β)/sin(α)
A=(1/2)*(ME)*(KE)*sin(180-(α+β))
sin(180-(α+β))=sin(α+β)
A=(1/2)*(b)*(b*sin(β)/sin(α))*sin(α+β)=[(1/2)*b²*sin(β)/sin(α)]*sin(α+β)
A=[(1/2)*b²*sin(β)/sin(α)]*sin(α+β)
KE/sin(β)=KM/sin(180-(α+β))
KM=(KE/sin(β))*sin(180-(α+β))--------- > KM=(KE/sin(β))*sin(α+β)
the answers part 2) areside KE=b*sin(β)/sin(α)side KM=(KE/sin(β))*sin(α+β)Area A=[(1/2)*b²*sin(β)/sin(α)]*sin(α+β)
Answer:
0
Step-by-step explanation:
2 + 2 = 4 and then 4 - 4 = 0
Answer:
32
Step-by-step explanation:
Step 1: Define
f(x) = 3x² - 5x - 4
g(x) = -4x - 12
Step 2: Find f(g(x))
f(g(x)) = 3(-4x - 12)² - 5(-4x - 12) - 4
f(g(x)) = 3(16x² + 96x + 144) + 20x + 60 + 4
f(g(x)) = 48x² + 288x + 432 + 20x + 64
f(g(x)) = 48x² + 308x + 496
Step 3: Find f(g(-4))
f(g(-4)) = 48(-4)² + 308(-4) + 496
f(g(-4)) = 48(16) - 1232 + 496
f(g(-4)) = 768 - 736
f(g(-4)) = 32
The length of the painting is 91 centimeters.
Answer: 67.27
Step-by-step explanation:
7.1 x 7.1 for the square = 50.41
7.1 divided by 2 = 3.55
3.55 x 4.75= 16.86
Normally here you would divide by 2, but you don’t need two because there is 2 triangles that are the same
Add the 50.41 and the 16.86 and you have your answer!