First, tan(<em>θ</em>) = sin(<em>θ</em>) / cos(<em>θ</em>), so if cos(<em>θ</em>) = 3/5 > 0 and tan(<em>θ</em>) < 0, then it follows that sin(<em>θ</em>) < 0.
Recall the Pythagorean identity:
sin²(<em>θ</em>) + cos²(<em>θ</em>) = 1
Then
sin(<em>θ</em>) = -√(1 - cos²(<em>θ</em>)) = -4/5
and so
tan(<em>θ</em>) = (-4/5) / (3/5) = -4/3
The remaining trig ratios are just reciprocals of the ones found already:
sec(<em>θ</em>) = 1/cos(<em>θ</em>) = 5/3
csc(<em>θ</em>) = 1/sin(<em>θ</em>) = -5/4
cot(<em>θ</em>) = 1/tan(<em>θ</em>) = -3/4
Sorry bro idkhdjdjjdjdjdjfjfjxjj83848 89**%%
Answer:
(x - 2)² + (y - 3)² = 9
Step-by-step explanation:
The equation of a circle in standard form is
(x - h)² + (y - k)² = r²
where (h, k) are the coordinates of the centre and r is the radius
here (h, k) = (2, 3) and r = 3, hence
(x - 2)² + (y - 3)² = 9 ← equation of circle
Where what assignment are you talking about
Well x=1 always unless it tells you other wise so 1+0.5 would equal 1.5 and so after that you keep adding so 1.5 + 0.5 equal 2 so you keep taking the previous answer and adding 0.5 to it