The events are not mutually exclusive because P(A or B) is not equal to P(A) + P(B)
<h3>Why are the events not mutually exclusive?</h3>
The probability values are given as:
P(A) = 0.3
P(B) = 0.6
P(A or B) = 0.8
For mutually exclusive events, we have:
P(A or B) = P(A) + P(B)
Substitute the known values in the above equation
P(A or B) = 0.3 + 0.6
Evaluate the sum
P(A or B) = 0.9
From the given parameters, we have
P(A or B) = 0.8
Hence, the events are not mutually exclusive because P(A or B) is not equal to P(A) + P(B)
Read more about probability at
brainly.com/question/25870256
#SPJ1
Answer:
23
m/s
Step-by-step explanation:
We can change the km to m first. 1km = 1000m.
84km/h = 84 000m/h
Then, we can change the h to s. 1h = 3600s.
84 000m/h = 23
m/s
Answer:
X= -2, -1, 0, 1
Step-by-step explanation:
X can be all of those
-2 ≤ X - this means that X is greater than -2 or equal
X< 2 - This means X is less than 2
so you find all the # from -2 to 1 because that is the number less than 2 so
-2, -1, 0, 1
Answer:
19.488
Step-by-step explanation:
8.12 x 2.4 = 19.488