1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
madreJ [45]
3 years ago
10

PLEASE HELP ASAP PLEASE PLEASE PLEASE

Mathematics
1 answer:
vovikov84 [41]3 years ago
6 0

Answer:

First blank- 4x

Second blank- combine

Third blank- X

Hope this helps :3

(Write feedback if incorrect)

You might be interested in
Can someone please help me with this question
Fittoniya [83]
48.2

arccos(4/6)



Mark brainliest please
5 0
2 years ago
Factor.<br> 4z² – 8z - 5
Nataly [62]

Answer: z = -1/2 = -0.500

z = 5/2 = 2.500

Step-by-step explanation:

Step by step solution :

Step  1  :

Equation at the end of step  1  :

 (22z2 -  8z) -  5  = 0  

Step  2  :

Trying to factor by splitting the middle term

2.1     Factoring  4z2-8z-5  

The first term is,  4z2  its coefficient is  4 .

The middle term is,  -8z  its coefficient is  -8 .

The last term, "the constant", is  -5  

Step-1 : Multiply the coefficient of the first term by the constant   4 • -5 = -20  

Step-2 : Find two factors of  -20  whose sum equals the coefficient of the middle term, which is   -8 .

     -20    +    1    =    -19  

     -10    +    2    =    -8    That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -10  and  2  

                    4z2 - 10z + 2z - 5

Step-4 : Add up the first 2 terms, pulling out like factors :

                   2z • (2z-5)

             Add up the last 2 terms, pulling out common factors :

                    1 • (2z-5)

Step-5 : Add up the four terms of step 4 :

                   (2z+1)  •  (2z-5)

            Which is the desired factorization

Equation at the end of step  2  :

 (2z - 5) • (2z + 1)  = 0  

Step  3  :

Theory - Roots of a product :

3.1    A product of several terms equals zero.  

When a product of two or more terms equals zero, then at least one of the terms must be zero.  

We shall now solve each term = 0 separately  

In other words, we are going to solve as many equations as there are terms in the product  

Any solution of term = 0 solves product = 0 as well.

Solving a Single Variable Equation :

3.2      Solve  :    2z-5 = 0  

Add  5  to both sides of the equation :  

                     2z = 5

Divide both sides of the equation by 2:

                    z = 5/2 = 2.500

Solving a Single Variable Equation :

3.3      Solve  :    2z+1 = 0  

Subtract  1  from both sides of the equation :  

                     2z = -1

Divide both sides of the equation by 2:

                    z = -1/2 = -0.500

Supplement : Solving Quadratic Equation Directly

Solving    4z2-8z-5  = 0   directly  

Earlier we factored this polynomial by splitting the middle term. let us now solve the equation by Completing The Square and by using the Quadratic Formula

Parabola, Finding the Vertex :

4.1      Find the Vertex of   y = 4z2-8z-5

For any parabola,Az2+Bz+C,the  z -coordinate of the vertex is given by  -B/(2A) . In our case the  z  coordinate is   1.0000  

Plugging into the parabola formula   1.0000  for  z  we can calculate the  y -coordinate :  

 y = 4.0 * 1.00 * 1.00 - 8.0 * 1.00 - 5.0

or   y = -9.000

Parabola, Graphing Vertex and X-Intercepts :

Root plot for :  y = 4z2-8z-5

Axis of Symmetry (dashed)  {z}={ 1.00}  

Vertex at  {z,y} = { 1.00,-9.00}  

z -Intercepts (Roots) :

Root 1 at  {z,y} = {-0.50, 0.00}  

Root 2 at  {z,y} = { 2.50, 0.00}  

Solve Quadratic Equation by Completing The Square

4.2     Solving   4z2-8z-5 = 0 by Completing The Square .

Divide both sides of the equation by  4  to have 1 as the coefficient of the first term :

  z2-2z-(5/4) = 0

Add  5/4  to both side of the equation :

  z2-2z = 5/4

Now the clever bit: Take the coefficient of  z , which is  2 , divide by two, giving  1 , and finally square it giving  1  

Add  1  to both sides of the equation :

 On the right hand side we have :

  5/4  +  1    or,  (5/4)+(1/1)  

 The common denominator of the two fractions is  4   Adding  (5/4)+(4/4)  gives  9/4  

 So adding to both sides we finally get :

  z2-2z+1 = 9/4

Adding  1  has completed the left hand side into a perfect square :

  z2-2z+1  =

  (z-1) • (z-1)  =

 (z-1)2

Things which are equal to the same thing are also equal to one another. Since

  z2-2z+1 = 9/4 and

  z2-2z+1 = (z-1)2

then, according to the law of transitivity,

  (z-1)2 = 9/4

We'll refer to this Equation as  Eq. #4.2.1  

The Square Root Principle says that When two things are equal, their square roots are equal.

Note that the square root of

  (z-1)2   is

  (z-1)2/2 =

 (z-1)1 =

  z-1

Now, applying the Square Root Principle to  Eq. #4.2.1  we get:

  z-1 = √ 9/4

Add  1  to both sides to obtain:

  z = 1 + √ 9/4

Since a square root has two values, one positive and the other negative

  z2 - 2z - (5/4) = 0

  has two solutions:

 z = 1 + √ 9/4

  or

 z = 1 - √ 9/4

Note that  √ 9/4 can be written as

 √ 9  / √ 4   which is 3 / 2

Solve Quadratic Equation using the Quadratic Formula

4.3     Solving    4z2-8z-5 = 0 by the Quadratic Formula .

According to the Quadratic Formula,  z  , the solution for   Az2+Bz+C  = 0  , where  A, B  and  C  are numbers, often called coefficients, is given by :

                                     

           - B  ±  √ B2-4AC

 z =   ————————

                     2A

 In our case,  A   =     4

                     B   =    -8

                     C   =   -5

Accordingly,  B2  -  4AC   =

                    64 - (-80) =

                    144

Applying the quadratic formula :

              8 ± √ 144

  z  =    —————

                   8

Can  √ 144 be simplified ?

Yes!   The prime factorization of  144   is

  2•2•2•2•3•3  

To be able to remove something from under the radical, there have to be  2  instances of it (because we are taking a square i.e. second root).

√ 144   =  √ 2•2•2•2•3•3   =2•2•3•√ 1   =

               ±  12 • √ 1   =

               ±  12

So now we are looking at:

          z  =  ( 8 ± 12) / 8

Two real solutions:

z =(8+√144)/8=1+3/2= 2.500

or:

z =(8-√144)/8=1-3/2= -0.500

Two solutions were found :

z = -1/2 = -0.500

z = 5/2 = 2.500

3 0
3 years ago
Read 2 more answers
Which set of coefficients of the terms in the Expansion of the binomial (x+y)^3 is correct?
lora16 [44]
A is correct.

Why? After opening the brackets we can see the equation as x^{3} + 3x^{2}y + 3y^{2}x + y^{3}
3 0
3 years ago
I WILL GIVE BRAINLIEST!!
Luda [366]

Answer:

Step-by-step explanation:

The union of two sets is a new set that contains all of the elements that are in at least one of the two sets. The union is written as A∪B or “A or B”. The intersection of two sets is a new set that contains all of the elements that are in both sets. The intersection is written as A∩B or “A and B”.

Hope this helps ^^

3 0
3 years ago
Read 2 more answers
Suppose triangle TIP and triangle TOP are isosceles triangles. Also suppose that TI=5, PI=7, and PO=11. What are all the possibl
Ede4ka [16]
<h3>Two answers: 5, 7</h3>

====================================================

Explanation:

A drawing may be helpful to see what's going on. Check out the diagram below. This is one way of drawing out the two triangles. The locations of the points don't really matter, and neither does the the orientation of how you rotate things. What does matter is we have the right points connected to form the segments mentioned.

----------

For now, focus on triangle TIP only. In order to have this be isosceles, we must make TP = 5 or TP = 7.

If TP = 5, then it's the same length as TI.

If TP = 7, then it's the same length as PI.

In either case, we have exactly two sides the same length (the other side different) which is what it means for a triangle to be isosceles.

----------

Let's consider triangle TOP. For it to be isosceles, we must have two sides the same length. We already locked in TP to be either 5 or 7 in the previous section above. So there's no way that TP could be 11 units long to match up with PO = 11.

If TP = 5, then OT must also be 5 units long so that triangle TOP is isosceles.

If TP = 7, then OT = 7 for similar reasoning.

Either way, TP only has two choices on what it could be.

----------

In short, we basically just write the first two values given to us to get the two triangles to be isosceles. We can't use TP = 11 as it would make triangle TIP to be scalene (all sides are different lengths).

7 0
3 years ago
Other questions:
  • Use synthetic division to find P(3) for P(x) =
    14·1 answer
  • Chris read 20 pages of a novel each day for 9 days during summer break. How many total pages did Chris read during summer break?
    12·1 answer
  • Are the two triangles similar?
    15·2 answers
  • If f(x)=-4x—2 is vertically translated 6 units up to g( x ) what is the y-intercept of g(x)
    13·1 answer
  • What is the area of the trapezoid?<br> 6 feet<br> 8 feet<br> 10 feet
    13·2 answers
  • What is the length of the hypotenuse?
    10·2 answers
  • CAN ANYBODY PLEASE HELP I NEED HELP ASAPPPP ILLL GIVE BRAINLIEST
    7·1 answer
  • If using the method of completing the square to solve the quadratic equation
    6·1 answer
  • Who want a turturer?<br><br>only 5 student!<br>​
    10·1 answer
  • Graph absolute value of x-1
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!