Answer:
Yes, it is a function
Step-by-step explanation:
Every possible input x value is paired with a unique output y value.
Another approach is to graph the function then conduct the VLT (vertical line test) at which point you will realize that any vertical line will intersect the graph at one point only meaning it is a function.
Hope this helps.
X=2
So you solve for x by simplifying bath sides of the equation, then all you do is isolate the variables
Answer:
Step-by-step explanation:
You know how subtraction is the <em>opposite of addition </em>and division is the <em>opposite of multiplication</em>? A logarithm is the <em>opposite of an exponent</em>. You know how you can rewrite the equation 3 + 2 = 5 as 5 - 3 = 2, or the equation 3 × 2 = 6 as 6 ÷ 3 = 2? This is really useful when one of those numbers on the left is unknown. 3 + _ = 8 can be rewritten as 8 - 3 = _, 4 × _ = 12 can be rewritten as 12 ÷ 4 = _. We get all our knowns on one side and our unknown by itself on the other, and the rest is computation.
We know that ; as a logarithm, the <em>exponent</em> gets moved to its own side of the equation, and we write the equation like this: , which you read as "the logarithm base 3 of 9 is 2." You could also read it as "the power you need to raise 3 to to get 9 is 2."
One historical quirk: because we use the decimal system, it's assumed that an expression like uses <em>base 10</em>, and you'd interpret it as "What power do I raise 10 to to get 1000?"
The expression means "the power you need to raise 10 to to get 100 is x," or, rearranging: "10 to the x is equal to 100," which in symbols is .
(If we wanted to, we could also solve this: , so )
28.2% of 1128
(28.2%)(1128)
(28.2/100)(1128)
(0.282)(1128)
318.096
The answer is 318.096