1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paha777 [63]
3 years ago
11

A. - 8/5B. 5/8C. - 5/8 D. 8/5​

Mathematics
1 answer:
IrinaK [193]3 years ago
5 0

Answer:

5/8

Step-by-step explanation:

To find the slope, use the formula

m = (y2-y1)/(x2-x1)

   = (2 - -3)/(6 - -2)

   = (2+3)/(6+2)

   = 5/8

You might be interested in
Five students visiting the student health center for a free dental examination during National Dental Hygiene Month were asked h
kirza4 [7]

Answer:

95% confidence interval for the mean number of months is between a lower limit of 6.67 months and an upper limit of 25.73 months.

Step-by-step explanation:

Confidence interval is given as mean +/- margin of error (E)

Data: 5, 15, 12, 22, 27

mean = (5+15+12+22+27)/5 = 81/5 = 16.2 months

sd = sqrt[((5-16.2)^2 + (15-16.2)^2 + (12-16.2)^2 + (22-16.2)^2 + (27-16.2)^2) ÷ 5] = sqrt(58.96) = 7.68 months

n = 5

degree of freedom = n-1 = 5-1 = 4

confidence level (C) = 95% = 0.95

significance level = 1 - C = 1 - 0.95 = 0.05 = 5%

critical value (t) corresponding to 4 degrees of freedom and 5% significance level is 2.776

E = t×sd/√n = 2.776×7.68/√5 = 9.53 months

Lower limit of mean = mean - E = 16.2 - 9.53 = 6.67 months

Upper limit of mean = mean + E = 16.2 + 9.53 = 25.73 months

95% confidence interval is (6.67, 25.73)

3 0
2 years ago
THIS IS THE THIRD AND FINAL TIME I WILL EVER POST A QUESTION ON BRAINLY IF SOMEONE GIVES ME A INCOMPLETE QUESTION (AKA TROLL COM
Afina-wow [57]

B and C are correct because you do basic PEMDAS and get 58 for both those expressions. If this is right could you possibly give me brainliest? Hope this helped.

8 0
2 years ago
Name the property of real numbers illustrated by the equation.
Julli [10]

Answer:

Distributive property

Step-by-step explanation:

The distributive property states a(b+c)=a*b+a*c. This property states that when you multiply more than one thing, you must be sure to multiply everything. When you order fast food combos, you do the distribution property to receive the correct order.

If I order 3 Happy Meals, then I will receive

3(hamburgers +fries + drinks +toys)

3 hamburgers+3 fries+3 drinks+3 toys.

If I don't, then I have broken the distribution property.

5 0
2 years ago
Find all solutions to the following quadratic equations, and write each equation in factored form.
dexar [7]

Answer:

(a) The solutions are: x=5i,\:x=-5i

(b) The solutions are: x=3i,\:x=-3i

(c) The solutions are: x=i-2,\:x=-i-2

(d) The solutions are: x=-\frac{3}{2}+i\frac{\sqrt{7}}{2},\:x=-\frac{3}{2}-i\frac{\sqrt{7}}{2}

(e) The solutions are: x=1,\:x=-1,\:x=\sqrt{5}i,\:x=-\sqrt{5}i

(f) The solutions are: x=1

(g) The solutions are: x=0,\:x=1,\:x=-2

(h) The solutions are: x=2,\:x=2i,\:x=-2i

Step-by-step explanation:

To find the solutions of these quadratic equations you must:

(a) For x^2+25=0

\mathrm{Subtract\:}25\mathrm{\:from\:both\:sides}\\x^2+25-25=0-25

\mathrm{Simplify}\\x^2=-25

\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\\\x=\sqrt{-25},\:x=-\sqrt{-25}

\mathrm{Simplify}\:\sqrt{-25}\\\\\mathrm{Apply\:radical\:rule}:\quad \sqrt{-a}=\sqrt{-1}\sqrt{a}\\\\\sqrt{-25}=\sqrt{-1}\sqrt{25}\\\\\mathrm{Apply\:imaginary\:number\:rule}:\quad \sqrt{-1}=i\\\\\sqrt{-25}=\sqrt{25}i\\\\\sqrt{-25}=5i

-\sqrt{-25}=-5i

The solutions are: x=5i,\:x=-5i

(b) For -x^2-16=-7

-x^2-16+16=-7+16\\-x^2=9\\\frac{-x^2}{-1}=\frac{9}{-1}\\x^2=-9\\\\\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\x=\sqrt{-9},\:x=-\sqrt{-9}

The solutions are: x=3i,\:x=-3i

(c) For \left(x+2\right)^2+1=0

\left(x+2\right)^2+1-1=0-1\\\left(x+2\right)^2=-1\\\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\\\x+2=\sqrt{-1}\\x+2=i\\x=i-2\\\\x+2=-\sqrt{-1}\\x+2=-i\\x=-i-2

The solutions are: x=i-2,\:x=-i-2

(d) For \left(x+2\right)^2=x

\mathrm{Expand\:}\left(x+2\right)^2= x^2+4x+4

x^2+4x+4=x\\x^2+4x+4-x=x-x\\x^2+3x+4=0

For a quadratic equation of the form ax^2+bx+c=0 the solutions are:

x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:}\quad a=1,\:b=3,\:c=4:\quad x_{1,\:2}=\frac{-3\pm \sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}

x_1=\frac{-3+\sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}=\quad -\frac{3}{2}+i\frac{\sqrt{7}}{2}\\\\x_2=\frac{-3-\sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}=\quad -\frac{3}{2}-i\frac{\sqrt{7}}{2}

The solutions are: x=-\frac{3}{2}+i\frac{\sqrt{7}}{2},\:x=-\frac{3}{2}-i\frac{\sqrt{7}}{2}

(e) For \left(x^2+1\right)^2+2\left(x^2+1\right)-8=0

\left(x^2+1\right)^2= x^4+2x^2+1\\\\2\left(x^2+1\right)= 2x^2+2\\\\x^4+2x^2+1+2x^2+2-8\\x^4+4x^2-5

\mathrm{Rewrite\:the\:equation\:with\:}u=x^2\mathrm{\:and\:}u^2=x^4\\u^2+4u-5=0\\\\\mathrm{Solve\:with\:the\:quadratic\:equation}\:u^2+4u-5=0

u_1=\frac{-4+\sqrt{4^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}=\quad 1\\\\u_2=\frac{-4-\sqrt{4^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}=\quad -5

\mathrm{Substitute\:back}\:u=x^2,\:\mathrm{solve\:for}\:x\\\\\mathrm{Solve\:}\:x^2=1=\quad x=1,\:x=-1\\\\\mathrm{Solve\:}\:x^2=-5=\quad x=\sqrt{5}i,\:x=-\sqrt{5}i

The solutions are: x=1,\:x=-1,\:x=\sqrt{5}i,\:x=-\sqrt{5}i

(f) For \left(2x-1\right)^2=\left(x+1\right)^2-3

\left(2x-1\right)^2=\quad 4x^2-4x+1\\\left(x+1\right)^2-3=\quad x^2+2x-2\\\\4x^2-4x+1=x^2+2x-2\\4x^2-4x+1+2=x^2+2x-2+2\\4x^2-4x+3=x^2+2x\\4x^2-4x+3-2x=x^2+2x-2x\\4x^2-6x+3=x^2\\4x^2-6x+3-x^2=x^2-x^2\\3x^2-6x+3=0

\mathrm{For\:}\quad a=3,\:b=-6,\:c=3:\quad x_{1,\:2}=\frac{-\left(-6\right)\pm \sqrt{\left(-6\right)^2-4\cdot \:3\cdot \:3}}{2\cdot \:3}\\\\x_{1,\:2}=\frac{-\left(-6\right)\pm \sqrt{0}}{2\cdot \:3}\\x=\frac{-\left(-6\right)}{2\cdot \:3}\\x=1

The solutions are: x=1

(g) For x^3+x^2-2x=0

x^3+x^2-2x=x\left(x^2+x-2\right)\\\\x^2+x-2:\quad \left(x-1\right)\left(x+2\right)\\\\x^3+x^2-2x=x\left(x-1\right)\left(x+2\right)=0

Using the Zero Factor Theorem: = 0 if and only if = 0 or = 0

x=0\\x-1=0:\quad x=1\\x+2=0:\quad x=-2

The solutions are: x=0,\:x=1,\:x=-2

(h) For x^3-2x^2+4x-8=0

x^3-2x^2+4x-8=\left(x^3-2x^2\right)+\left(4x-8\right)\\x^3-2x^2+4x-8=x^2\left(x-2\right)+4\left(x-2\right)\\x^3-2x^2+4x-8=\left(x-2\right)\left(x^2+4\right)

Using the Zero Factor Theorem: = 0 if and only if = 0 or = 0

x-2=0:\quad x=2\\x^2+4=0:\quad x=2i,\:x=-2i

The solutions are: x=2,\:x=2i,\:x=-2i

3 0
2 years ago
PLEASE HELP ASAP!!!!!!!!!!! Giving BRAINLIEST!!!
Anna [14]
The answer that I got was 7
5 0
2 years ago
Other questions:
  • Find the sum 7/8 + 2/4
    13·2 answers
  • Consider the given function and the given interval.
    12·1 answer
  • What’s the disturbutive property when solving -4(-1.5 - 9)
    12·1 answer
  • Write an equation that represents each mixed number as a sums of a whole number and unit fractions 4 1/4 and 1 5/6
    13·1 answer
  • Mabel had a skating rink party for her birthday the cost to rent the party room was $75 the cost of the ticket for each of the 6
    15·2 answers
  • Two children weighing 17 and 20 kilograms are sitting on opposite sides of a seesaw, both 2 meters from the axis of rotation. wh
    10·1 answer
  • Please ONLY Answer #3
    10·2 answers
  • Simplify 6^7/6^5 in index form
    13·2 answers
  • Multiply. Write your answer in scientific notation.
    13·1 answer
  • Find the amount A accumulated after investing $4800 for 17 years at an interest rate 6.2% compounded quarterly.​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!