Let S(t) denote the amount of sugar in the tank at time t. Sugar flows in at a rate of
(0.04 kg/L) * (2 L/min) = 0.08 kg/min = 8/100 kg/min
and flows out at a rate of
(S(t)/1600 kg/L) * (2 L/min) = S(t)/800 kg/min
Then the net flow rate is governed by the differential equation

Solve for S(t):


The left side is the derivative of a product:
![\dfrac{\mathrm d}{\mathrm dt}\left[e^{t/800}S(t)\right]=\dfrac8{100}e^{t/800}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dt%7D%5Cleft%5Be%5E%7Bt%2F800%7DS%28t%29%5Cright%5D%3D%5Cdfrac8%7B100%7De%5E%7Bt%2F800%7D)
Integrate both sides:



There's no sugar in the water at the start, so (a) S(0) = 0, which gives

and so (b) the amount of sugar in the tank at time t is

As
, the exponential term vanishes and (c) the tank will eventually contain 64 kg of sugar.
106, 129, 152, 175, 198 count by 23
Answer:
The ship is located at (3,5)
Explanation:
In the first test, the equation of the position was:
5x² - y² = 20 ...........> equation I
In the second test, the equation of the position was:
y² - 2x² = 7 ..............> equation II
This equation can be rewritten as:
y² = 2x² + 7 ............> equation III
Since the ship did not move in the duration between the two tests, therefore, the position of the ship is the same in the two tests which means that:
equation I = equation II
To get the position of the ship, we will simply need to solve equation I and equation II simultaneously and get their solution.
Substitute with equation III in equation I to solve for x as follows:
5x²-y² = 20
5x² - (2x²+7) = 20
5x² - 2y² - 7 = 20
3x² = 27
x² = 9
x = <span>± </span>√9
We are given that the ship lies in the first quadrant. This means that both its x and y coordinates are positive. This means that:
x = √9 = 3
Substitute with x in equation III to get y as follows:
y² = 2x² + 7
y² = 2(3)² + 7
y = 18 + 7
y = 25
y = +√25
y = 5
Based on the above, the position of the ship is (3,5).
Hope this helps :)
The answer is B 10/18 and 3/18
Answer:
-2 ≤ x ≤ 6
Step-by-step explanation:
The first is ...
6 ≥ x
and it can also be written as ...
x ≤ 6
The second is
-2 ≤ x
The two inequalities can be combined into one compound inequality:
-2 ≤ x ≤ 6
_____
<em>Comment on this answer</em>
I prefer the answer in this form because it puts the parts of the expression in the same order that they appear on a number line. It can also be written as ...
6 ≥ x ≥ -2