Answer:
- <u>0.5 s</u> (using 1 significan figure since the initial velocity is given with 1 significant figure)
Explanation:
Let's see what each term in the function v (t) = - 9.8t + 5 means:
The variable t is the time
The coffecient - 9.8 (which is negative) means that the velocity is reduced 9.8 m/s each second.
That means that the motion is uniformly decelerated with acceleration - 9.8 m/s².
The term + 5, means that the object was launched with an upward velocity of 5 m/s.
Hence the equation tells that after the object was launched upward it starts to lose speed and will reach a maximum height when the velocity is equal to zero, from which it starts falling.
So, you can calculate when the object reachs it maximum height and starts falling by making the velocity, v (t), equal to zero and solving for t. This is how you do it:
- v (t) = 0
- 0 = - 9.8t + 5
- 9.8t = 5 remember that the units of 9.8 is m/s² and of 5 is m/s
- t = 5 m/s / 9.8 m/s² = 0.51 s
So, the object starts fallin at 0.51 s. Since, the velocity is reported with 1 significant digit you answer should also show 1 significant digit, which means t = 0.5 s.
0.75 is the decimal format.
Answer:
well what is the question here?
Step-by-step explanation:
Answer:
El ancho del río es 59.9 metros.
Step-by-step explanation:
El ancho del río lo podemos calcular con la siguiente relación trigonométrica asumiendo que la torre forma un triángulo rectángulo con el río:
En donde:
CA: es el cateto adyacente = Altura de la torre = 28.2 m
CO: es el cateto opuesto = ancho del río =?
θ: es el ángulo adyacente a CA
Dado que el ángulo de depresión (25.2°) está ubicado fuera de la parte superior de la hipotenusa del triángulo que forma la torre con la orilla opuesta del río, debemos calcular el ángulo interno (θ) como sigue:
Ahora, el ancho del río es:
Por lo tanto, el ancho del río es 59.9 metros.
Espero que te sea de utilidad!
Assuming annual compounding, then:
FV=15000*(1+.035)^15
FV=15000*1.6753488307521611831782355996538
FV=$25130.23
At the end of 15 years, Tom should have $25130.23 in his account.