The first derivative of the function f(x) = x² - 5 is equal to f'(x) = 2 · x.
<h3>How to find the derivative of a quadratic equation by definition of derivative</h3>
In this question we have a quadratic function, in which we must make use of the definition of derivative to find the expression of its first derivative. Then, the procedure is shown below:
f(x) = x² - 5 Given
f' = [(x + h)² - 5 - x² + 5] / h Definition of derivative
(x² + 2 · x · h + h² - 5 - x² + 5) / h Perfect square trinomial
(2 · x · h + h²) / h Associative, commutative and modulative properties / Existence of additive inverse
2 · x + h Distributive, commutative and associative properties / Definition of division / Existence of multiplicative inverse
2 · x h = 0 / Result
The first derivative of the function f(x) = x² - 5 is equal to f'(x) = 2 · x.
To learn more on derivatives: brainly.com/question/25324584
#SPJ1
Answer:
i think that this is a great idea, but maybe instead of $5 bucks everytime they do good work, maybe just like 50 bucks at the end of the quarter, if they get good grades.
Step-by-step explanation:
Answer:
x = - 3h
Step-by-step explanation:
Given
+ 1 = - 2 ( subtract 1 from both sides )
= - 3 ( multiply both sides by h )
x = - 3h
Answer: A
Step by step explaining:
4.25x4.25x4.25=
76.76
Then if you round it would get you to your answer.
<u>Product is basically a vocabulary word meaning multiply</u>. 1500 x 1700 gives you a huge number that is 2,550,000.