Let x = greater number
y = smaller number
(1)

(1)

(2)

We'll substitute y in (1) to (2)
(2)

x - 9 = 0 or x + 3 = 0
x = 9 x = -3
and
y = x - 6 y = x - 6
y = 9 - 6 y = -3 - 6
y = 3 y = -9
Therefore, the two numbers can be 9 and 3 or -3 and -9.
Answer:
f(g(-2)) = 3
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
Functions
- Function Notation
- Composite Functions
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
f(x) = 4 - x²
g(x) = 2x + 5
<u>Step 2: Find g(-2)</u>
- Substitute in <em>x</em> [Function g(x)]: g(-2) = 2(-2) + 5
- Multiply: g(-2) = -4 + 5
- Add: g(-2) = 1
<u>Step 3: Find f(g(-2))</u>
- Substitute in <em>x</em> [Function f(x)]: f(g(-2)) = 4 - (1)²
- Evaluate exponents: f(g(-2)) = 4 - 1
- Subtract: f(g(-2)) = 3
Answer:
I believe -14 is the third term
Step-by-step explanation: