<h2>
Question:</h2>
Find k if (x+1) is a factor of 2x³ + kx² + 1
<h2>
Answer:</h2>
k = 1
<h2>
Step-by-step explanation:</h2>
The factor of a polynomial F(x) is another polynomial that divides evenly into F(x). For example, x + 3 is a factor of the polynomial x² - 9.
<em>This is because;</em>
i. x² - 9 can be written as (x - 3)(x + 3) which shows that both (x - 3) and (x + 3) are factors.
ii. If x = -3 is substituted into the polynomial x² - 9, the result gives zero. i.e
=> (-3)² - 9
=> (9) - 9 = 0
Therefore, if (x + a) is a factor of a polynomial, substituting x = -a into the polynomial should result to zero. This also means that, if x - a is a factor of a polynomial, substituting x = a into the polynomial should give zero.
<em><u>From the question</u></em>
Given polynomial: 2x³ + kx² + 1
Given factor: x + 1.
Since x + 1 is a factor of the polynomial, substituting x = -1 into the polynomial should give zero and from there we can calculate the value of k. i.e
2(-1)³ + k(-1)² + 1 = 0
2(-1) + k(1) + 1 = 0
-2 + k + 1 = 0
k - 1 = 0
k = 1
Therefore the value of k is 1.
Answer:
-
Step-by-step explanation:
Answer:
1. Rewriting the expression 5.a.b.b.5.c.a.b.5.b using exponents we get: 
5. 
6. 
7. 
Step-by-step explanation:
Question 1:
We need to rewrite the expression using exponents
5.a.b.b.5.c.a.b.5.b
We will first combine the like terms
5.5.5.a.a.b.b.b.b.c
Now, if we have 5.5.5 we can write it in exponent as: 
a.a as
b.b.b.b as: 
So, our result will be:

Rewriting the expression 5.a.b.b.5.c.a.b.5.b using exponents we get: 
Question:
Rewrite using positive exponent:
The rule used here will be:
which states that if we need to make exponent positive, we will take it to the denominator.
Applying thee above rule for getting the answers:
5)
6) 
7) 
We know that
so, we get

Answer:
the 3 one
Step-by-step explanation:
Answer:
r
Step-by-step explanation:
10r - 9r = r