Answer:
Step-by-step explanation:
Demand = 19,500 units per year (D)
Ordering cost = $25 per order (O)
Holding cost = $4 per unit per year (C)
a) 

= 
= 
= 493.71044 ≈ 494
b) Annual holding cost = 
= 
= 4 × 247
= 988
c) Annual ordering cost = 
= 
= 25 × 39.47
= 986.75
AOQ = 494
Annual holding cost = 988
Annual ordering cost = 986.75
We let x and y be the number of Hobbies & Recreation and Soliloquies episodes that Steve subscribe. The system of linear equation that best represent the given above is,
x + y = 10
32x + 42y = 340
The values of x and y from the system are 8 and 2, respectively. Thus Steve subscribed to 8 Hobbies & Recreation and to 2 Soliloquies episodes.
<h2><em><u>V</u></em><em><u>A</u></em><em><u>L</u></em><em><u>U</u></em><em><u>E</u></em><em><u> </u></em><em><u> </u></em><em><u>O</u></em><em><u>F</u></em><em><u> </u></em><em><u>X</u></em><em><u>=</u></em><em><u>5</u></em><em><u>0</u></em><em><u> </u></em><em><u>D</u></em><em><u>E</u></em><em><u>G</u></em><em><u>R</u></em><em><u>E</u></em><em><u>E</u></em><em><u> </u></em><em><u>A</u></em><em><u>N</u></em><em><u>D</u></em><em><u> </u></em><em><u>V</u></em><em><u>A</u></em><em><u>L</u></em><em><u>U</u></em><em><u>E</u></em><em><u> </u></em><em><u>O</u></em><em><u>F</u></em><em><u> </u></em><em><u>Y</u></em><em><u>=</u></em><em><u>1</u></em><em><u>0</u></em><em><u>0</u></em><em><u> </u></em><em><u>D</u></em><em><u>E</u></em><em><u>G</u></em><em><u>R</u></em><em><u>E</u></em><em><u>E</u></em></h2>
if we look on one side, we already have one measurement. 4 cm. ok, that's the measurement on that side. look to the left now. that other side is also the same length, so we take that number and multiply it be 2 to get

Wait! we're not done yet. look at the top. do you see the 3? well that's the width for the top of the rectangle. the bottom must be the same to right? so we get

add both equations and you get

The answer is 14cm! Don't forget to label. ;)
Answer:
a equals 105°
Step-by-step explanation:
angles in a straight line add up to 180°
a+75=180
a=180-75
a=105°