Answer:
20%-30%
Step-by-step explanation:
KJXVKGHJFSVTFKTJKHFDSYU rifixbxiifxojfjfvshssjhssjwkhxxc
Answer:
C. all four angles are congruent, and opposite sides are congruent for a horizontal and vertical line of reflection
Step-by-step explanation:
A. isn't correct because all four sides aren't congruent, only the pair of opposite sides are congruent. Sense only opposite side are congruent you can only reflect the opposite sides onto each other and not diagonally meaning B. and D. are incorrect leaving C. all four angles are congruent, and opposite sides are congruent for a horizontal and vertical line of reflection as the correct answer
Answer:
Step-by-step explanation:
There are 3 ways to find the other x intercept.
1) Polynomial Long Division.
Divide x^2 - 3x + 2 by the binomial x - 2, because by the Factor Theorem if a is a root of a polynomial then x - a is a factor of said polynomial.
2) Just solving for x when y = 0, by using the quadratic formula.
.
So the other x - intercept is at (1, 0)
3) Using Vietta's Theorem regarding the solutions of a quadratic
Namely, the sum of the solutions of a quadratic equation is equal to the quotient between the negative coefficient of the linear term divided by the coefficient of the quadratic term.

And the product between the solutions of a quadratic equation is just the quotient between the constant term and the coefficient of the quadratic term.

These relations between the solutions give us a brief idea of what the solutions should be like.
a) We know that the probability Jane will win is 0.2, and draws is 0.3, which leaves the probability of her losing to be 0.5 (1 - 0.2 - 0.3 = 0.5).
I'll begin by filling in for the first game:
win = 0.2, draw = 0.3, lose = 0.5
Next, we'll fill in for if she wins, draws, or loses the second game. The probabilities would be the same as the first game for the second game.
Win (0.2): win = 0.2, draw = 0.3, lose = 0.5
Draw (0.3): win = 0.2, draw = 0.3, lose = 0.5
Lose (0.5): win = 0.2, draw = 0.3, lose = 0.5
b) To find the probability that Jane will win both games, we need to multiply the probability of Jane winning the first game by the probability of her winning the second game.
0.2 x 0.2 = 0.04
Hope this helps! :)