3x+5y=10 and 5x-3y=-6 is perpendicular.
Answer:
y = -6/3x + 8
Step-by-step explanation:
Answer:
![L(f(t)) = \dfrac{6}{S^2+1} [\sqrt{3} \ S +1 ]](https://tex.z-dn.net/?f=L%28f%28t%29%29%20%3D%20%5Cdfrac%7B6%7D%7BS%5E2%2B1%7D%20%5B%5Csqrt%7B3%7D%20%5C%20S%20%2B1%20%5D)
Step-by-step explanation:
Given that:

recall that:
cos (A-B) = cos AcosB + sin A sin B
∴
![f(t) = 12 [cos\ t \ cos \dfrac{\pi}{6}+ sin \ t \ sin \dfrac{\pi}{6}]](https://tex.z-dn.net/?f=f%28t%29%20%3D%2012%20%5Bcos%5C%20%20t%20%5C%20%20cos%20%5Cdfrac%7B%5Cpi%7D%7B6%7D%2B%20sin%20%5C%20t%20%20%5C%20sin%20%5Cdfrac%7B%5Cpi%7D%7B6%7D%5D)
![f(t) = 12 [cos \ t \ \dfrac{3}{2}+ sin \ t \ sin \dfrac{1}{2}]](https://tex.z-dn.net/?f=f%28t%29%20%3D%2012%20%5Bcos%20%5C%20%20t%20%5C%20%5Cdfrac%7B3%7D%7B2%7D%2B%20sin%20%20%5C%20t%20%20%5C%20sin%20%5Cdfrac%7B1%7D%7B2%7D%5D)

![L(f(t)) = L ( 6 \sqrt{3} \ cos \ (t) + 6 \ sin \ (t) ]](https://tex.z-dn.net/?f=L%28f%28t%29%29%20%3D%20L%20%28%206%20%5Csqrt%7B3%7D%20%5C%20cos%20%5C%20%28t%29%20%2B%206%20%5C%20sin%20%5C%20%28t%29%20%5D)
![L(f(t)) = 6 \sqrt{3} \ L [cos \ (t) ] + 6\ L [ sin \ (t) ]](https://tex.z-dn.net/?f=L%28f%28t%29%29%20%3D%206%20%5Csqrt%7B3%7D%20%5C%20L%20%5Bcos%20%5C%20%28t%29%20%5D%20%2B%206%5C%20L%20%5B%20sin%20%5C%20%28t%29%20%5D)



![L(f(t)) = \dfrac{6}{S^2+1} [\sqrt{3} \ S +1 ]](https://tex.z-dn.net/?f=L%28f%28t%29%29%20%3D%20%5Cdfrac%7B6%7D%7BS%5E2%2B1%7D%20%5B%5Csqrt%7B3%7D%20%5C%20S%20%2B1%20%5D)
In this situation, there are 2 separate terms (parts of the story). The first part is the information about the coupon that applies to the daily rate of $40. You will represent this as 0.75 (for the 75% that you will be paying) x 40. (The other part of this story is that you are paying $0.15 per mile which is represented as 0.15m. You need to put these together to get 0.75(40) + 0.15m. The 0.25 times 40 can be simplified to say 30, so write it as $30 + $0.15m.
Simplifying the expression (x - 2y) + (3x + 4y).
Work:
(x - 2y) + (3x + 4y)
Combine like terms.
x + 3x = 4x
-2y + 4y = 2y
Reform the expression.
4x + 2y
Simplified Expression: 4x + 2y.