Answer:
D. the dolphin in the back diverge under different selective pressures, which accounts for their difference
Explanation:
I hope this is helps you
Answer: superior temporal gym
Explanation:in the posterior region of the superior temporal gyms. Wennickle Area wis located which plays a critical role in understanding and producing any meaningful speech
The presence of paired chromosomes makes a <u>diploid </u>cell, while a single member of a pair of chromosomes makes a<u>haploid </u>cell.
Diploid cells. Meiosis is the process of cell division by which involving gametes. Cell division is just the same for sperm and egg cells, but they have distinguishable descriptions and labels in the process. Spermatogenesis is for the males’ sperm cells and oogenesis is the process for females’ egg cells. The cell division of meiosis involves the two phases, respectively meiosis I and meiosis II. Meiosis I like mitosis is the cell division that produces diploid cells<span>. These diploid cells are cells that contain a complete pair of chromosomes which is 46. The result is two diploid cells after the first meiosis. To provide clear explanation, in contrast haploid cells only contain 23 chromosomes and are created after meiosis II which is 4 in number. </span>
Answer:
The correct answer is ''METAPHASE I.''
Explanation:
Metaphase I is the stage in which chromosomal studies are generally performed, because its morphology is very clear. The chromosomes, moved by the mitotic spindle, are placed in the center, between the two asters and form the so-called metaphase plate, in which the chromosomes are positioned in such a way that the kinetochore of each sister chromatid are oriented towards the opposite poles. Keeping chromosomes on the cell equator implies a balance between the forces of the microtubules that tend to move the kinetochores toward opposite poles, so positioning them in the center involves a great deal of energy.In each kinetochore, between 20-30 microtubules can be anchored, which exert traction force towards the pole from which they come, so the metaphase plate is maintained by the balance between the opposite forces of the poles on the chromosomes, which hold their sister chromatids by centromeric cohesin.