Answer: i think it’s no real solutions
Step-by-step explanation:
1 = sin²0 + cos²0
sin²0 = 1 - cos²0
sin²0 = 1 - 11/36
sin²0 = 25/36
sin 0 = 5/6 or -5/6
In the first quadrant, the values for sin, cos and tan are positive.
sin0 = 5/6
Answer:

Step-by-step explanation:

Factor out the common term
:

Answer:
A = Heterozygous
B = Capital
C = Capital
G = Heterozygous
Step-by-step explanation:
Depends on which is dominant (Captital Letter)
If both are the same (lowercase or uppercase) eg TT, or tt They are capital
If different casings, they are Heterozygous.
(DUE TO Brainly disliking the word please refer Capital as H,o,m,o,z,y,g,o,u,s
Answer:
The graph has a domain of all real numbers.
The graph has a y-intercept at
.
The graph has an x-intercept at
.
Step-by-step explanation:
Given: The graph is ![y=\sqrt[3]{x-1}+2](https://tex.z-dn.net/?f=y%3D%5Csqrt%5B3%5D%7Bx-1%7D%2B2)
The domain of a function is a set of input values for which the function is real and defined.
Thus, the graph has a domain of
.
To find the y-intercept: To find the y-intercept, substitute
in
.
![\begin{aligned}y &=\sqrt[3]{x-1}+2 \\&=\sqrt[3]{0-1}+2 \\&=-1+2 \\&=1\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7Dy%20%26%3D%5Csqrt%5B3%5D%7Bx-1%7D%2B2%20%5C%5C%26%3D%5Csqrt%5B3%5D%7B0-1%7D%2B2%20%5C%5C%26%3D-1%2B2%20%5C%5C%26%3D1%5Cend%7Baligned%7D)
Thus, the y-intercept is 
To find the x-intercept: To find the x-intercept, substitute
in
.
![\begin{aligned}y &=\sqrt[3]{x-1}+2 \\0 &=\sqrt[3]{x-1}+2 \\-2 &=\sqrt[3]{x-1} \\(-2)^{3} &=(\sqrt[3]{x-1})^{3} \\-8 &=x-1 \\-7 &=x\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7Dy%20%26%3D%5Csqrt%5B3%5D%7Bx-1%7D%2B2%20%5C%5C0%20%26%3D%5Csqrt%5B3%5D%7Bx-1%7D%2B2%20%5C%5C-2%20%26%3D%5Csqrt%5B3%5D%7Bx-1%7D%20%5C%5C%28-2%29%5E%7B3%7D%20%26%3D%28%5Csqrt%5B3%5D%7Bx-1%7D%29%5E%7B3%7D%20%5C%5C-8%20%26%3Dx-1%20%5C%5C-7%20%26%3Dx%5Cend%7Baligned%7D)
Thus, the x-intercept is 