Answer:17 2/7 Hope it helped!
Step-by-step explanation:
Graph D, because no x-value repeats and it passes the vertical line test.
Answer:
The proportion of students whose height are lower than Darnell's height is 71.57%
Step-by-step explanation:
The complete question is:
A set of middle school student heights are normally distributed with a mean of 150 centimeters and a standard deviation of 20 centimeters. Darnel is a middle school student with a height of 161.4cm.
What proportion of proportion of students height are lower than Darnell's height.
Answer:
We first calculate the z-score corresponding to Darnell's height using:

We substitute x=161.4 ,
, and
to get:

From the normal distribution table, we read 0.5 under 7.
The corresponding area is 0.7157
Therefore the proportion of students whose height are lower than Darnell's height is 71.57%
3π = 540 Degrees
Hope it helped :)
Here we must see in how many different ways we can select 2 students from the 3 clubs, such that the students <em>do not belong to the same club. </em>We will see that there are 110 different ways in which 2 students from different clubs can be selected.
So there are 3 clubs:
- Club A, with 10 students.
- Club B, with 4 students.
- Club C, with 5 students.
The possible combinations of 2 students from different clubs are
- Club A with club B
- Club A with club C
- Club B with club C.
The number of combinations for each of these is given by the product between the number of students in the club, so we get:
- Club A with club B: 10*4 = 40
- Club A with club C: 10*5 = 50
- Club B with club C. 4*5 = 20
For a total of 40 + 50 + 20 = 110 different combinations.
This means that there are 110 different ways in which 2 students from different clubs can be selected.
If you want to learn more about combination and selections, you can read:
brainly.com/question/251701