1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hitman42 [59]
2 years ago
7

Calculate the volume of the prism by first finding the total number of half-unit cubes that will fill it. There are 8 half-unit

cubes in every unit cube. 12 1​
Mathematics
1 answer:
Tema [17]2 years ago
4 0

Answer: 3

Step-by-step explanation: QPEX VERIFIED JUST DID IT

You might be interested in
The z-statistic for a sample of delmar's practice times is 1.41. how should this statistic be interpreted in terms of the hypoth
mafiozo [28]

Answer: c) There is not enough evidence to reject H0

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
1)
VikaD [51]

Answer:

a. Point S

b. Line segment PT and Line segment ST

c. PSQRU

d. Lines PR and SQ

e. Plane C and Plane QRS

Step-by-step explanation:

7 0
1 year ago
What are 2 equivalent fractions for 4/5?
VashaNatasha [74]
Two equivalent fractions would be 8/10
and 12/15<span />
8 0
3 years ago
A box designer has been charged with the task of determining the surface area of various open boxes (no lid) that can be constru
Viktor [21]

Answer:

1) S = 2\cdot w\cdot l - 8\cdot x^{2}, 2) The domain of S is 0 \leq x \leq \frac{\sqrt{w\cdot l}}{2}. The range of S is 0 \leq S \leq 2\cdot w \cdot l, 3) S = 176\,in^{2}, 4) x \approx 4.528\,in, 5) S = 164.830\,in^{2}

Step-by-step explanation:

1) The function of the box is:

S = 2\cdot (w - 2\cdot x)\cdot x + 2\cdot (l-2\cdot x)\cdot x +(w-2\cdot x)\cdot (l-2\cdot x)

S = 2\cdot w\cdot x - 4\cdot x^{2} + 2\cdot l\cdot x - 4\cdot x^{2} + w\cdot l -2\cdot (l + w)\cdot x + l\cdot w

S = 2\cdot (w+l)\cdot x - 8\cdpt x^{2} + 2\cdot w \cdot l - 2\cdot (l+w)\cdot x

S = 2\cdot w\cdot l - 8\cdot x^{2}

2) The maximum cutout is:

2\cdot w \cdot l - 8\cdot x^{2} = 0

w\cdot l - 4\cdot x^{2} = 0

4\cdot x^{2} = w\cdot l

x = \frac{\sqrt{w\cdot l}}{2}

The domain of S is 0 \leq x \leq \frac{\sqrt{w\cdot l}}{2}. The range of S is 0 \leq S \leq 2\cdot w \cdot l

3) The surface area when a 1'' x 1'' square is cut out is:

S = 2\cdot (8\,in)\cdot (11.5\,in)-8\cdot (1\,in)^{2}

S = 176\,in^{2}

4) The size is found by solving the following second-order polynomial:

20\,in^{2} = 2 \cdot (8\,in)\cdot (11.5\,in)-8\cdot x^{2}

20\,in^{2} = 184\,in^{2} - 8\cdot x^{2}

8\cdot x^{2} - 164\,in^{2} = 0

x \approx 4.528\,in

5) The equation of the box volume is:

V = (w-2\cdot x)\cdot (l-2\cdot x) \cdot x

V = [w\cdot l -2\cdot (w+l)\cdot x + 4\cdot x^{2}]\cdot x

V = w\cdot l \cdot x - 2\cdot (w+l)\cdot x^{2} + 4\cdot x^{3}

V = (8\,in)\cdot (11.5\,in)\cdot x - 2\cdot (19.5\,in)\cdot x^{2} + 4\cdot x^{3}

V = (92\,in^{2})\cdot x - (39\,in)\cdot x^{2} + 4\cdot x^{3}

The first derivative of the function is:

V' = 92\,in^{2} - (78\,in)\cdot x + 12\cdot x^{2}

The critical points are determined by equalizing the derivative to zero:

12\cdot x^{2}-(78\,in)\cdot x + 92\,in^{2} = 0

x_{1} \approx 4.952\,in

x_{2}\approx 1.548\,in

The second derivative is found afterwards:

V'' = 24\cdot x - 78\,in

After evaluating each critical point, it follows that x_{1} is an absolute minimum and x_{2} is an absolute maximum. Hence, the value of the cutoff so that volume is maximized is:

x \approx 1.548\,in

The surface area of the box is:

S = 2\cdot (8\,in)\cdot (11.5\,in)-8\cdot (1.548\,in)^{2}

S = 164.830\,in^{2}

4 0
2 years ago
A company uses a combination of three components- A, B and C to create three different drone designs. The first design Glider us
FrozenT [24]

Answer:

Consider the following calculations

Step-by-step explanation:

Since 1 Blimp uses 2 components of B and C each

=> choosing 2 components of B(remaining after using in other prototypes) for 1st model= 22C2

choosing 2 components of B(remaining after using in other prototypes) for 2nd model= 21C2

choosing 2 components of B(remaining after using in other prototypes) for 3rd model= 20C2

choosing 2 components of B(remaining after using in other prototypes) for 4th model= 19C2

choosing 2 components of B(remaining after using in other prototypes) for 5th model= 18C2

and choosing 2 components of C(remaining after using in other prototypes) = 24C2

Similarly for C

P(5 prototypes of Blimp created)=[(22C2 / 25C2 )*(24C2 / 25C2 )] + [(21C2 / 25C2 )*(23C2 / 25C2 )]+[(20C2 / 25C2 )*(22C2 / 25C2 )]+[(19C2 / 25C2 )*(21C2 / 25C2 )]+[(18C2 / 25C2 )*(20C2 / 25C2 )]

3 0
3 years ago
Other questions:
  • What is the total area of an 8”x12” picture and it’s Frame if the frame is 1.5” thick
    12·1 answer
  • 4 Carter sells sports videos to local businesses
    10·1 answer
  • Are the triangles similar?
    14·1 answer
  • The mobile company charges $180 for an hour of service. How many dollars are customers charged every minute?
    12·2 answers
  • This number is less than 200 and greater than 100. The ones digit is 5 less than 10. The tens digit is 2 more than the ones digi
    15·1 answer
  • What is 660 yds converted to mi and the process?
    6·1 answer
  • Two buildings are 12m apart on the same horizontal level. From the top of the taller building, the angle of depression of the bo
    12·1 answer
  • Evaluate 5+x; if x=7
    9·2 answers
  • 20 points! need these answers asap!
    15·2 answers
  • The difference of two numbers is 4. Their sum is 18. Find the numbers.
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!