Whereas the density of the hemisphere at any point is proportional to it's density, then
The full answer in attachment, we use the partial integral using the <span>spherical coordinates,
and we find that </span>the mass of h = <span>πK/2</span>
Firstly, let's create a function of f(t) where t represents the time that has past, and f(t) represents the amount of rainwater. We know that when t=1, then f(t)=10, and t=2 then f(t)=15. So, let's take that and analyze it:
(1,10)
(2,15)
m = (15-10)/(2-1) = 5
y-intercept = 5
∴ f(t) = 5t+5
Now we just evaluate t for 10:
f(10) = (5*10)+5
f(10) = 55
22° you just subtract the numbers.
Answer:
2/15
Step-by-step explanation:
Answer:
It D
Step-by-step explanation:
k