Using the Pythagorean theorem we can solve for the radius
see attached picture:
Answer:
y = 2x + 3
Step-by-step explanation:
The y-intercept is clearly marked: it's b = 3 (or 0, 3).
Going from the point (-3, -3) to the point (0, 3),
x increases by 3 and y increases by 6. Thus, the slope of the line through these two points is m = rise / run = 6 / 3, or m = 2.
Starting with the slope-intercept form of the equation of a straight line:
y = mx + b, we substitute 2 for m and 3 for b, obtaining:
y = 2x + 3
<span>1) if 2 times the wind speed is increased by 2, the wind speed is still less
than 46 km/h.
=> 2x + 2 < 46
2) Twice the wind speed minus 27 is greater than 11 km/h.
=> 2x - 27 > 11
Part A: Create a compound inequality to represent the wind speed range.
(3 points)
from 2x + 2 < 46
=> 2x < 44
=> x < 22
from 2x - 27 > 11
=> 2x > 11 + 27
=> 2x > 38
=> x > 19
The set of inequalities is
2x + 2 <46
2x - 27 > 11
The solution is x < 22 and x > 19, which is:
19 < x < 22 <----- answer
Part B: Can the wind speed in this town be 20 km/h? Justify
your answer by solving the inequalities in Part A. (3 points)
Yes, the wind speed can be 20 km/h, because the solution of the inequality is the range (19,22).
Part C:
The average wind speed in another town is 23 km/h, but the actual wind
speed is within 4 km/h of the average. Write and solve an inequality to
find the range of wind speed in this town.
x ≥ 23 - 4 => x ≥ 19
x ≤ 23 + 4=> x ≤ 27
=> 19 ≤ x ≤ 27
=> [19,27]
</span>