Answer:
uh i really wanna help but maybe dividing would help :)
Step-by-step explanation:
It would cost $72 dollars to cover the larger garden
<h3>
Answer:</h3>
Factor 6 from the first two terms.
<h3>
Step-by-step explanation:</h3>
By factoring out "a", you can better see what "h" needs to be.
- y = 6(x^2 +3x) +14 . . . . 6 factored from first 2 terms
- add the square of half the x-coefficient inside parentheses; add the opposite outside: y = 6(x^2 +3x +2.25) +14 -6(2.25)
- rewrite as a square; combine the constants: y = 6(x+1.5)^2 +0.5
Answer:
5
Step-by-step explanation:
So 1/6 of an hour is 10 minutes and 3/4 of a Rubiks cube is technically 1 1/4 so in an hour she can solve five in an hour
A) The longest horizontal distance is reached at 45 degrees angle. This is true for any projectile launch.
B) First, calculate fligth time (using the vertical motion) and then calculate the horizontal movement.
Flight time = 2* ascendent time
ascendent time => final vertical velocity, Vy, = 0
sin(45) = Voy / Vo => Voy = Vosin(45) = 25.5 m/s * (√2) / 2 = 18.03 m/s
Vy = Voy - gt = 0 => Voy = gt = t = Voy / g
Use g = 10 m/s^ (it is an aproximation, because the actual value is about 9.81 m/s^2 depending on the latitud)
t = 18.03 m/s / 10 m/s^2 = 1.83 s
This is the ascendant time going upward.
The flight time is 2*1.83 = 3.66 s
Horizontal motion
Horizontal velocity = Vx = constant = Vox = Vo*cos(45) = 18.03 m/s
Vx = x / t => x = Vx*t
Horizontal distance = xmax = 18.03m/s*3.66 s = 65.99 m
c) The time the ballon will be in the air was calculated in the part B, it is 18.03 s