Find all the zeros of the polynomial, and arrange the zeros in increasing order. ...
Plot those numbers on the number line as open or closed points based upon the original inequality symbol.
Choose a test value in each interval to see if the interval satisfies the inequality or not.
Answer:
a) P(B'|A) = 0.042
b) P(B|A') = 0.625
Step-by-step explanation:
Given that:
80% of the light aircraft that disappear while in flight in a certain country are subsequently discovered
Of the aircraft that are discovered, 63% have an emergency locator,
whereas 89% of the aircraft not discovered do not have such a locator.
From the given information; it is suitable we define the events in order to calculate the probabilities.
So, Let :
A = Locator
B = Discovered
A' = No Locator
B' = No Discovered
So; P(B) = 0.8
P(B') = 1 - P(B)
P(B') = 1- 0.8
P(B') = 0.2
P(A|B) = 0.63
P(A'|B) = 1 - P(A|B)
P(A'|B) = 1- 0.63
P(A'|B) = 0.37
P(A'|B') = 0.89
P(A|B') = 1 - P(A'|B')
P(A|B') = 1 - 0.89
P(A|B') = 0.11
Also;
P(B ∩ A) = P(A|B) P(B)
P(B ∩ A) = 0.63 × 0.8
P(B ∩ A) = 0.504
P(B ∩ A') = P(A'|B) P(B)
P(B ∩ A') = 0.37 × 0.8
P(B ∩ A') = 0.296
P(B' ∩ A) = P(A|B') P(B')
P(B' ∩ A) = 0.11 × 0.2
P(B' ∩ A) = 0.022
P(B' ∩ A') = P(A'|B') P(B')
P(B' ∩ A') = 0.89 × 0.2
P(B' ∩ A') = 0.178
Similarly:
P(A) = P(B ∩ A ) + P(B' ∩ A)
P(A) = 0.504 + 0.022
P(A) = 0.526
P(A') = 1 - P(A)
P(A') = 1 - 0.526
P(A') = 0.474
The probability that it will not be discovered given that it has an emergency locator is,
P(B'|A) = P(B' ∩ A)/P(A)
P(B'|A) = 0.022/0.526
P(B'|A) = 0.042
(b) If it does not have an emergency locator, what is the probability that it will be discovered?
The probability that it will be discovered given that it does not have an emergency locator is:
P(B|A') = P(B ∩ A')/P(A')
P(B|A') = 0.296/0.474
P(B|A') = 0.625
Insert the point, (5,-2) with the slope of the line to figure out the equation. You can either use point-slope form, or plug it for for slope-intercept form.
Slope-intercept form:
-2 = -2(5) + b
-2 = -10 + b
Add 10 on both sides
8 = b
Thus,
y = -2x + 8
Answer is B
hello how are you? I am fine