Answer:
The similar triangles are
and ![\triangle BCG](https://tex.z-dn.net/?f=%5Ctriangle%20BCG)
and ![PE =286](https://tex.z-dn.net/?f=PE%20%3D286)
Step-by-step explanation:
Given
See attachment for the required figure
Solving (a): The similar triangles
The similar triangles are
and ![\triangle BCG](https://tex.z-dn.net/?f=%5Ctriangle%20BCG)
Solving (b): Why they are similar
Both triangles are similar because
is dilated (i.e. enlarged) and then reflected to give
.
Solving (c): Calculate BE and PE
The following are equivalent ratios
![BP: BC = BE : BG](https://tex.z-dn.net/?f=BP%3A%20BC%20%3D%20BE%20%3A%20BG)
and
![BP: BC = PE : CG](https://tex.z-dn.net/?f=BP%3A%20BC%20%3D%20PE%20%3A%20CG)
Solving for BE, we have:
![BP: BC = BE : BG](https://tex.z-dn.net/?f=BP%3A%20BC%20%3D%20BE%20%3A%20BG)
Substitute the known values
![250:350 = BE:450](https://tex.z-dn.net/?f=250%3A350%20%3D%20BE%3A450)
Express as fraction
![\frac{250}{350} = \frac{BE}{450}](https://tex.z-dn.net/?f=%5Cfrac%7B250%7D%7B350%7D%20%3D%20%5Cfrac%7BBE%7D%7B450%7D)
Multiply both sides by 450
![450 * \frac{250}{350} = BE](https://tex.z-dn.net/?f=450%20%2A%20%5Cfrac%7B250%7D%7B350%7D%20%3D%20BE)
![321 = BE](https://tex.z-dn.net/?f=321%20%3D%20BE)
-- approximated
Solving for PE, we have:
![BP: BC = PE : CG](https://tex.z-dn.net/?f=BP%3A%20BC%20%3D%20PE%20%3A%20CG)
Substitute known values
![250:350 = PE:400](https://tex.z-dn.net/?f=250%3A350%20%3D%20PE%3A400)
Express as fraction
![\frac{250}{350} = \frac{PE}{400}](https://tex.z-dn.net/?f=%5Cfrac%7B250%7D%7B350%7D%20%3D%20%5Cfrac%7BPE%7D%7B400%7D)
Multiply both sides by 400
![400 * \frac{250}{350} = PE](https://tex.z-dn.net/?f=400%20%2A%20%5Cfrac%7B250%7D%7B350%7D%20%3D%20PE)
![286 = PE](https://tex.z-dn.net/?f=286%20%3D%20PE)
![PE =286](https://tex.z-dn.net/?f=PE%20%3D286)