The measure of angle A is 144.3 degrees and the angle to cut the molding is 54.3 degrees
<h3>How to solve for angle A?</h3>
Start by solving the acute part of angle A using the following sine function
sin(Ax) = (30 - 4)/32
Evaluate the quotient
sin(Ax) = 0.8125
Take the arc sin of both sides
Ax = 54.3
The measure of angle A is then calculated as:
A = 90 + Ax
This gives
A = 90 + 54.3
Evaluate
A = 144.3
Hence, the measure of angle A is 144.3 degrees
<h3>The angle to cut the molding</h3>
In (a), we have:
Ax = 54.3
This represents the angle where the molding would be cut
Hence, the angle to cut the molding is 54.3 degrees
Read more about angles at:
brainly.com/question/1592456
#SPJ1
Answer:
Step-by-step explanation:
NA = √[(- 4 - 1 )² + (- 3 - 2)²] = 5√2
AT = √[(8 - 1 )² + (1 - 2)²] = 5√2
TS = √[(3 - 8 )² + (- 4 - 1)²] = 5√2
NS = √[(- 4 - 3 )² + (- 3 + 4)²] = 5√2
NA = AT = TS = NS = 5√2
= (- 3 - 2) / (- 4 - 1) = 1 ........ <em>(1)</em>
= (- 4 - 1) / (3 - 8 ) = 1 ......... <em>(2)</em>
From (1) and (2) ⇒ NA║TS
= ( 1 - 2) / ( 8 - 1) = - 1 / 7 .......... <em>(3)</em>
= ( - 4 + 3) / ( 3 + 4) = - 1 / 7 .... <em>(4)</em>
From (3) and (4) ⇒ AT║NS
Thus, NATS is rhombus.
Answer: $21.6
Step-by-step explanation: you multiply 1.20 by 18