Source Net:
. . . a Line graph.
Line graphs are used to track changes over short and long periods of time. When smaller changes exist, line graphs are better to use than bar graphs. Line graphs can also be used to compare changes over the same period of time for more than one group.
. . . a Pie Chart.
Pie charts are best to use when you are trying to compare parts of a whole. They do not show changes over time.
. . . a Bar Graph.
Bar graphs are used to compare things between different groups or to track changes over time. However, when trying to measure change over time, bar graphs are best when the changes are larger.
. . . an Area Graph.
Area graphs are very similar to line graphs. They can be used to track changes over time for one or more groups. Area graphs are good to use when you are tracking the changes in two or more related groups that make up one whole category (for example public and private groups).
. . . an X-Y Plot.
X-Y plots are used to determine relationships between the two different things. The x-axis is used to measure one event (or variable) and the y-axis is used to measure the other. If both variables increase at the same time, they have a positive relationship. If one variable decreases while the other increases, they have a negative relationship. Sometimes the variables don't follow any pattern and have no relationship.
The phase of the skin regeneration which includes migrating epithelial cells beneath the scab, the dissolving of the clot, and reduced phagocytic activity is Proliferation. A proliferation is the production or growth of cells by multiplying the parts and proliferation is also the rapid increase of the cells.
I believe the cerebrum is the largest part of the brain, so the answer should be C.
Answer:
1. Stabilizing Selection
2. Directional Selection
3. Disruptive Selection
Explanation:
Stabilizing Selection
This type of natural selection occurs when there are selective pressures working against two extremes of a trait and therefore the intermediate or “middle” trait is selected for. If we look at a distribution of traits in the population, it is noticeable that a standard distribution is followed:
Example: For a plant, the plants that are very tall are exposed to more wind and are at risk of being blown over. The plants that are very short fail to get enough sunlight to prosper. Therefore, the plants that are a middle height between the two get both enough sunlight and protection from the wind.
Directional Selection
This type of natural selection occurs when selective pressures are working in favour of one extreme of a trait. Therefore when looking at a distribution of traits in a population, a graph tends to lean more to one side:
Example: Giraffes with the longest necks are able to reach more leaves to each. Selective pressures will work in the advantage of the longer neck giraffes and therefore the distribution of the trait within the population will shift towards the longer neck trait.
Disruptive Selection
This type of natural selection occurs when selective pressures are working in favour of the two extremes and against the intermediate trait. This type of selection is not as common. When looking at a trait distribution, there are two higher peaks on both ends with a minimum in the middle as such:
Example: An area that has black, white and grey bunnies contains both black and white rocks. Both the traits for white and black will be favored by natural selection since they both prove useful for camouflage. The intermediate trait of grey does not prove as useful and therefore selective pressures act against the trait.