Answer:
CE = 17
Step-by-step explanation:
∵ m∠D = 90
∵ DK ⊥ CE
∴ m∠KDE = m∠KCD⇒Complement angles to angle CDK
In the two Δ KDE and KCD:
∵ m∠KDE = m∠KCD
∵ m∠DKE = m∠CKD
∵ DK is a common side
∴ Δ KDE is similar to ΔKCD
∴ 
∵ DE : CD = 5 : 3
∴ 
∴ KD = 5/3 KC
∵ KE = KC + 8
∵ 
∴ 
∴ 
∴ 
∴ 
∴ KC = (8 × 9) ÷ 16 = 4.5
∴ KE = 8 + 4.5 = 12.5
∴ CE = 12.5 + 4.5 = 17
The inverse of the statement is M be the point on PQ since PM is congruent to QM than M is midpoint on the PQ.
<h3>What do you mean by inverse?</h3>
Inverse of the statement means that explain the condition in reverse way or vice versa.
Since, M is the midpoint of PQ, then PM is congruent to QM.
Proving in reverse way, let m be the point between P and Q the distance M from P is equal to the distance from M to Q. Which implies that M lies as the mid of the P and Q.
Thus, the inverse of the statement is M be the point on PQ since PM is congruent to QM than M is midpoint on the PQ.
Learn more about inverse here:
brainly.com/question/5338106
#SPJ1
Answer:
197
Step-by-step explanation:
Divide 1640 by 25
1640/25=65
Then multiply 65 and 3
65x3=197
Answer:
-30
Step-by-step explanation:
substitute the values and get -30