Step-by-step explanation:
(1) Factor the GCF out of the trinomial on the left side of the equation. (2 points: 1 for the GCF, 1 for the trinomial) 2x²+6x-20=0
2x²+6x-20
2(x²+3x-10)
the factors are 2 and (x²+3x-10)
(2) Factor the polynomial completely. (4 points: 2 point for each factor)
2(x²+3x-10)
2(x²-2x+5x-10)
2(x(x-2) + 5(x-2)) group like terms
2(x+5)(x-2)
(3) If a product is equal to zero, we know at least one of the factors must be zero. And the constant factor cannot be zero. So set each binomial factor equal to 0 and solve for x, the width of your project. (2 points: 1 point for each factor)
constant = 2 cannot be zero
the other factors are (x+5) and (x-2)
(x+5)=0 => x= -5
or
(x-2)=0 => x=2
(4) What are the dimensions of your project? Remember that the width of your project is represented by x. (2 points: 1 point for each dimension)
thank you so much, sorry if it's a little confusing!!
(it is indeed confusing, because physical dimensions cannot be negative)
The dimensions of the project (assumed a rectangle) are +2 and -5
Answer:
53°
Step-by-step explanation:
It is given that the total measurement of the two angles combined would equate to 116°.
It is also given that m∠WXY is 10° more then m∠ZXY.
Set the system of equation:
m∠1 + m∠2 = 116°
m∠1 = m∠2 + 10°
First, plug in "m∠2 + 10" for m∠1 in the first equation:
m∠1 + m∠2 = 116°
(m∠2 + 10) + m∠2 = 116°
Simplify. Combine like terms:
2(m∠2) + 10 = 116
Next, isolate the <em>variable</em>, m∠2. Note the equal sign, what you do to one side, you do to the other. Do the opposite of PEMDAS.
First, subtract 10 from both sides of the equation:
2(m∠2) + 10 (-10) = 116 (-10)
2(m∠2) = 116 - 10
2(m∠2) = 106
Next, divide 2 from both sides of the equation:
(2(m∠2))/2 = (106)/2
m∠2 = 106/2 = 53°
53° is your answer.
~
Answer:
3.2 , Edgar , Liam
Step-by-step explanation: