Sequence: 2 + 1 + 1/2 + 1/4 + 1/8 + ...
Explanation:
Here Given Sum to Infinity
![\sf S \infty \ =a_1 \ x \ \dfrac{1}{1-r}](https://tex.z-dn.net/?f=%5Csf%20S%20%5Cinfty%20%20%5C%20%3Da_1%20%20%5C%20x%20%5C%20%5Cdfrac%7B1%7D%7B1-r%7D)
Identify following
Solve:
![\rightarrow \sf S \infty \ =2 \ x \ \dfrac{1}{1-\frac{1}{2} }](https://tex.z-dn.net/?f=%5Crightarrow%20%5Csf%20S%20%5Cinfty%20%20%5C%20%3D2%20%20%5C%20x%20%5C%20%5Cdfrac%7B1%7D%7B1-%5Cfrac%7B1%7D%7B2%7D%20%7D)
![\rightarrow \sf S \infty \ =4](https://tex.z-dn.net/?f=%5Crightarrow%20%5Csf%20S%20%5Cinfty%20%20%5C%20%3D4)
The sum of this infinity series is 4
Answer:
The cubic polynomial is: x³ - x² - 6x.
Step-by-step explanation:
Given the degree and the roots of the polynomial we can find it.
An n - degree polynomial has n roots.
Here, given that the degree of the polynomial is 3 and three roots are given. Also, if (x - a) is a factor of a polynomial then x = a is a root of the polynomial. The converse is also true.
Since, the roots of the polynomial are given to -2, 0, 3 then it should have had the following factors.
(x + 2)(x - 0)(x - 3) = 0
Multiplying them we get:
⇒ ![$ (x^2 + 2x)(x - 3) $](https://tex.z-dn.net/?f=%24%20%28x%5E2%20%2B%202x%29%28x%20-%203%29%20%24)
![$ = x^3 - 3x^2 + 2x^2 - 6x $](https://tex.z-dn.net/?f=%24%20%3D%20x%5E3%20-%203x%5E2%20%2B%202x%5E2%20-%206x%20%24)
which is the required cubic polynomial.
Hence, the answer.
Evaluating a function means to plug the required value, substituting every x occurrence with that value.
So, you have
![f(x)=3x^2+80x \implies f(2) = 3\cdot 2^2+80\cdot 2 = 3\cdot 4 + 160 = 12+160=172](https://tex.z-dn.net/?f=f%28x%29%3D3x%5E2%2B80x%20%5Cimplies%20f%282%29%20%3D%203%5Ccdot%202%5E2%2B80%5Ccdot%202%20%3D%203%5Ccdot%204%20%2B%20160%20%3D%2012%2B160%3D172)
Answer:
x = 87
Step-by-step explanation:
The angles you see have a Corresponding Relationship so they are equal
x+15=102
x+15-15=102-15 (subtract 15 from both sides)
x=102-15
x = 87
31*31= 961 is perfect square but it don't respect the sentence
32*32=1024 is the lowest perfect square formed by 4 digits