Answer:
128√5/3 mm³
Step-by-step explanation:
Since we are not told what to find, we can as well look for the volume of the pyramid
Volume of a square pyramid: V = (1/3)a²h
a is the side length of the square
h is the height of the pyramid
Given
a = 8mm
l² = (a/2)² + h²
l² = (a/2)² + h²
6² = (8/2)² + h²
h² = 6² - 4²
h² = 36 - 16
h² = 20
h = √20
Volume of a square pyramid = (1/3)*8²*√20
Volume of a square pyramid = 1/3 * 64 * 2√5
Volume of a square pyramid = 128√5/3 mm³
Answer:
Follows are the solution to this question:
Step-by-step explanation:
In the given question some of the data is missing so, its correct question is defined in the attached file please find it.
Let
A is quality score of A
B is quality score of B
C is quality score of C
![\to P[A] =0.55\\\\\to P[B] =0.28\\\\\to P[C] =0.17\\](https://tex.z-dn.net/?f=%5Cto%20P%5BA%5D%20%3D0.55%5C%5C%5C%5C%5Cto%20P%5BB%5D%20%3D0.28%5C%5C%5C%5C%5Cto%20P%5BC%5D%20%3D0.17%5C%5C)
Let F is a value of the content so, the value is:
![\to P[\frac{F}{A}] =0.15\\\\\to P[\frac{F}{B}] =0.12\\\\\to P[\frac{F}{C}] =0.14\\](https://tex.z-dn.net/?f=%5Cto%20P%5B%5Cfrac%7BF%7D%7BA%7D%5D%20%3D0.15%5C%5C%5C%5C%5Cto%20P%5B%5Cfrac%7BF%7D%7BB%7D%5D%20%3D0.12%5C%5C%5C%5C%5Cto%20P%5B%5Cfrac%7BF%7D%7BC%7D%5D%20%3D0.14%5C%5C)
Now, we calculate the tooling value:
![\to p[\frac{C}{F}]](https://tex.z-dn.net/?f=%5Cto%20p%5B%5Cfrac%7BC%7D%7BF%7D%5D)
using the baues therom:

ns +sb = 5.4 cm
sb = en so en can be plugged in for sb
therefor es = 5.4
No, John is incorrect.
<h3>
Correct work shown:</h3>








The correct answer should be x = 7 or x = -1
Answer:
deep nutz are for you only