1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Agata [3.3K]
3 years ago
11

Which is not a function

Mathematics
2 answers:
BlackZzzverrR [31]3 years ago
4 0

Answer:

c

Step-by-step explanation:

it dose not have a set pattern

Ulleksa [173]3 years ago
3 0

Answer:

a

Step-by-step explanation:

each input has to have exactly one output

In answer a the input 2 has 5 outputs

You might be interested in
Suppose that an airline quotes a flight time of 128 minutes between two cities. Furthermore, suppose that historical flight reco
ANTONII [103]

Answer:

(a) The probability density function of <em>X</em> is:

f_{X}(x)=\frac{1}{b-a};\ a

(b) The value of P (129 ≤ X ≤ 146) is 0.3462.

(c) The probability that a randomly selected flight between the two cities will be at least 3 minutes late is 0.4327.

Step-by-step explanation:

The random variable <em>X</em> is defined as the flight time between the two cities.

Since the random variable <em>X</em> denotes time interval, the random variable <em>X</em> is continuous.

(a)

The random variable <em>X</em> is Uniformly distributed with parameters <em>a</em> = 10 minutes and <em>b</em> = 154 minutes.

The probability density function of <em>X</em> is:

f_{X}(x)=\frac{1}{b-a};\ a

(b)

Compute the value of P (129 ≤ X ≤ 146) as follows:

Apply continuity correction:

P (129 ≤ X ≤ 146) = P (129 - 0.50 < X < 146 + 0.50)

                           = P (128.50 < X < 146.50)

                           =\int\limits^{146.50}_{128.50} {\frac{1}{154-102}} \, dx

                           =\frac{1}{52}\times \int\limits^{146.50}_{128.50} {1} \, dx

                           =\frac{1}{52}\times (146.50-128.50)

                           =0.3462

Thus, the value of P (129 ≤ X ≤ 146) is 0.3462.

(c)

It is provided that a randomly selected flight between the two cities will be at least 3 minutes late, i.e. <em>X</em> ≥ 128 + 3 = 131.

Compute the value of P (X ≥ 131) as follows:

Apply continuity correction:

P (X ≥ 131) = P (X > 131 + 0.50)

                 = P (X > 131.50)

                 =\int\limits^{154}_{131.50} {\frac{1}{154-102}} \, dx

                 =\frac{1}{52}\times \int\limits^{154}_{131.50} {1} \, dx

                 =\frac{1}{52}\times (154-131.50)

                 =0.4327

Thus, the probability that a randomly selected flight between the two cities will be at least 3 minutes late is 0.4327.

6 0
3 years ago
An experiment consists of choosing objects without regards to order. Determine the size of the sample space when you choose the
sdas [7]

Answer:

a

    n=  75, 582

b

  n=    2300

c

  n =   253

Step-by-step explanation:

     Generally the size of the sample sample space is  mathematically represented as

           n  =   \left N } \atop {}} \right.  C_r

Where   N is the total number of objects available and  r is the  number of objects to be selected

    So  for  a,  where N = 19  and r = 8  

         n  =   \left 19 } \atop {}} \right.  C_8 =  \frac{19 !}{(19 - 8 )! 8!}

                           =     \frac{19 *18 *17 *16 *15 *14 *13 *12 *11! }{11 ! \ 8!}

                           n=  75, 582

    For  b  Where  N  = 25 and  r  =  3

           n  =   \left 25 } \atop {}} \right.  C_3 =  \frac{25 !}{(19 - 3 )! 3!}

                             =     \frac{25 *24 *23 *22 !  }{22 ! \ 3!}

                             n=    2300

   For  c  Where  N  = 23 and  r  =  2

            n  =   \left 23 } \atop {}} \right.  C_2 =  \frac{23 !}{(23 - 2 )! 2!}

                              =     \frac{23 *22 *21!  }{21 ! \ 3!}

                              n =   253

4 0
3 years ago
Ben drinks tea at an incredible rate. He drinks 3 1/2 liters of tea every 2/3 of an hour. Ben drinks tea at a constant rate. How
s344n2d4d5 [400]
Divide 3 1/2 by 2/3. 3 1/2 = 7/2 as an improper fraction, so we have 7/2 ÷ 2/3 = 7/2 * 3/2 = 21/4 = 5 1/4 L
5 0
3 years ago
Read 2 more answers
Graph the solution of y – 2 &gt; 1 on a number line.
Hunter-Best [27]
<span> y-2 > 1
 y-2+2 > 1+2
 y+0 > 3
 y > 3</span>

5 0
3 years ago
Once again co sines . Please help me and include explanation with a clear answer
vladimir1956 [14]

Using the law os cosines formula b^2 = a^2 + c^2 - 2*a*c*cos(B)

a = 17, b = 8, c = 16

8^2 = 17^2 + 16^2 - 2*17*16* cos(B)

64 = 289 + 256 - 544 * cos(B)

544*cos(B) = 289 + 256 - 64

544 * cos(B) = 481

cos (B) = 481/544

B = arccos(481/544)

B = 27.8 degrees

8 0
3 years ago
Other questions:
  • Please differentiate this problem
    12·1 answer
  • Solve for p in the literal equation 5p+2r=q
    7·1 answer
  • Can someone pls tell me what I should press plss and thank you
    13·1 answer
  • Simplify. <br> 5/√10<br><br> A. √10/2<br><br> B. √5<br><br> C. √2<br><br> D. √2/2
    8·1 answer
  • Evaluate 6t−20−32u when t=6 and u=1/4
    9·2 answers
  • Is 4,564,282 prime or composite?Explain
    12·1 answer
  • Solve for the value of z. (z+2)° (4z-7)°​
    6·1 answer
  • Second piece help ASAPP..
    10·2 answers
  • You are traveling by car to New York City. The map you will use for your journey is
    12·2 answers
  • Need an answer to this one. (Choose a point either A/B/C/D)
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!