The result of the product of (0.36) and (0.53) is 0.1908
<h3>How to determine the product</h3>
The product expression is given as:
(0.36) * (0.53)
Rewrite the product as follows:

Expand the product

Expand

Evaluate the sum

See attachment for the area diagram of the product
Read more about products at:
brainly.com/question/10873737
Answer:
0.927
Step-by-step explanation:
just plug it in to a algebraric calculator!
Answer:
1. 1.3608 or 1.36 Ton 2. 9259.42 but 9259 also works pounds 3. 56 pints 4. 3.9
Step-by-step explanation:
1. 1.3608 or 1.36 Ton 2. 9259.42 but 9259 also works pounds 3. 56 pints 4. 3.9
Answer:
AC = 5 cm
BD = 12.5 cm (3 sf) [or 2 × root 39]
BE = 6.93 cm (3 sf) [or 4 × root 3]
Step-by-step explanation:
CE = 8cm [CE is radius of circle]
AC + 3 = 8
<u>A</u><u>C</u><u> </u><u>=</u><u> </u><u>5</u><u> </u><u>c</u><u>m</u>
BC = 8cm [BC is a radius of circle]
(AC)^2 + (AB)^2 = (BC)^2 [Pythagoras theorem]
25 + (AB)^2 = 64
AB = 6.2450 cm (5 sf) [or root 39]
BD = 2(BA)
= 2(6.2450)
<u>B</u><u>D</u><u> </u><u>=</u><u> </u><u>1</u><u>2</u><u>.</u><u>5</u><u> </u><u>c</u><u>m</u><u> </u><u>(</u><u>3</u><u> </u><u>s</u><u>f</u><u>)</u><u> </u><u>[</u><u>o</u><u>r</u><u> </u><u>2</u><u> </u><u>×</u><u> </u><u>r</u><u>o</u><u>o</u><u>t</u><u> </u><u>3</u><u>9</u><u>]</u>
(BA)^2 + (AE)^2 = (BE)^2 [Pythagoras theorem]
39 + 9 = (BE)^2
<u>B</u><u>E</u><u> </u><u>=</u><u> </u><u>6</u><u>.</u><u>9</u><u>3</u><u> </u><u>c</u><u>m</u><u> </u><u>(</u><u>3</u><u> </u><u>s</u><u>f</u><u>)</u><u> </u><u>[</u><u>o</u><u>r</u><u> </u><u>4</u><u> </u><u>×</u><u> </u><u>r</u><u>o</u><u>o</u><u>t</u><u> </u><u>3</u><u>]</u>
Given:
Principal value = $640
Rate of interest = 3.9% not compounded
Number of years = 8
To find:
The amount after 8 years.
Solution:
It is given that the interest is not compounded. It means, we need to find simple interest.
Formula for simple interest:

where, P is principal, r is rate of interest and t is time in years.
Put P=640, r=0.039 and t=8.


So, the interest is $199.68.
Now, amount after 8 years is

where, P is principal and I is interest.


Therefore, the amount after 8 years is $839.68.