The answer is 23 1/3. First, you need to add 280 to both sides of the equations in order cancel out 280 and get 12x by itself. But remember whatever you do to one side of an equation, you must to do the other. So now you have 12x=280. Now divide both sides of the equation by 12 in order to get x completely isolated. 280 divided by twelve is 23 1/3.
Answer to the question is..
32,34,36
largest is 36
60 = a * (-30)^2
a = 1/15
So y = (1/15)x^2
abc)
The derivative of this function is 2x/15. This is the slope of a tangent at that point.
If Linda lets go at some point along the parabola with coordinates (t, t^2 / 15), then she will travel along a line that was TANGENT to the parabola at that point.
Since that line has slope 2t/15, we can determine equation of line using point-slope formula:
y = m(x-x0) + y0
y = 2t/15 * (x - t) + (1/15)t^2
Plug in the x-coordinate "t" that was given for any point.
d)
We are looking for some x-coordinate "t" of a point on the parabola that holds the tangent line that passes through the dock at point (30, 30).
So, use our equation for a general tangent picked at point (t, t^2 / 15):
y = 2t/15 * (x - t) + (1/15)t^2
And plug in the condition that it must satisfy x=30, y=30.
30 = 2t/15 * (30 - t) + (1/15)t^2
t = 30 ± 2√15 = 8.79 or 51.21
The larger solution does in fact work for a tangent that passes through the dock, but it's not important for us because she would have to travel in reverse to get to the dock from that point.
So the only solution is she needs to let go x = 8.79 m east and y = 5.15 m north of the vertex.