Answer:
They are similar because Since all the sides are equal in each triangle, the ratio of corresponding sides will all be equal
Step-by-step explanation:
Answer:
Step-by-step explanation:
(a)
Consider the following:

Use sine rule,
![\frac{b}{a}=\frac{\sinB}{\sin A} \\\\=\frac{\sin{\frac{\pi}{3}} }{\sin{\frac{\pi}{4}}}\\\\=\frac{[\frac{\sqrt{3}}{2}]}{\frac{1}{\sqrt{2}}}\\\\=\frac{\sqrt{2}}{2}\times \frac{\sqrt{2}}{1}=\sqrt{\frac{3}{2}}](https://tex.z-dn.net/?f=%5Cfrac%7Bb%7D%7Ba%7D%3D%5Cfrac%7B%5CsinB%7D%7B%5Csin%20A%7D%0A%5C%5C%5C%5C%3D%5Cfrac%7B%5Csin%7B%5Cfrac%7B%5Cpi%7D%7B3%7D%7D%0A%7D%7B%5Csin%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%7D%5C%5C%5C%5C%3D%5Cfrac%7B%5B%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7D%5D%7D%7B%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%7D%5C%5C%5C%5C%3D%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%5Ctimes%20%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B1%7D%3D%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D)
Again consider,
![\frac{b}{a}=\frac{\sin{B}}{\sin{A}} \\\\\sin{B}=\frac{b}{a}\times \sin{A}\\\\\sin{B}=\sqrt{\frac{3}{2}}\sin {A}\\\\B=\sin^{-1}[\sqrt{\frac{3}{2}}\sin{A}]](https://tex.z-dn.net/?f=%5Cfrac%7Bb%7D%7Ba%7D%3D%5Cfrac%7B%5Csin%7BB%7D%7D%7B%5Csin%7BA%7D%7D%0A%5C%5C%5C%5C%5Csin%7BB%7D%3D%5Cfrac%7Bb%7D%7Ba%7D%5Ctimes%20%5Csin%7BA%7D%5C%5C%5C%5C%5Csin%7BB%7D%3D%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D%5Csin%20%7BA%7D%5C%5C%5C%5CB%3D%5Csin%5E%7B-1%7D%5B%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D%5Csin%7BA%7D%5D)
Thus, the angle B is function of A is, ![B=\sin^{-1}[\sqrt{\frac{3}{2}}\sin{A}]](https://tex.z-dn.net/?f=B%3D%5Csin%5E%7B-1%7D%5B%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D%5Csin%7BA%7D%5D)
Now find 
Differentiate implicitly the function
with respect to A to get,

b)
When
, the value of
is,

c)
In general, the linear approximation at x= a is,

Here the function ![f(A)=B=\sin^{-1}[\sqrt{\frac{3}{2}}\sin{A}]](https://tex.z-dn.net/?f=f%28A%29%3DB%3D%5Csin%5E%7B-1%7D%5B%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D%5Csin%7BA%7D%5D)
At 
![f(\frac{\pi}{4})=B=\sin^{-1}[\sqrt{\frac{3}{2}}\sin{\frac{\pi}{4}}]\\\\=\sin^{-1}[\sqrt{\frac{3}{2}}.\frac{1}{\sqrt{2}}]\\\\\=\sin^{-1}(\frac{\sqrt{2}}{2})\\\\=\frac{\pi}{3}](https://tex.z-dn.net/?f=f%28%5Cfrac%7B%5Cpi%7D%7B4%7D%29%3DB%3D%5Csin%5E%7B-1%7D%5B%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D%5Csin%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%5D%5C%5C%5C%5C%3D%5Csin%5E%7B-1%7D%5B%5Csqrt%7B%5Cfrac%7B3%7D%7B2%7D%7D.%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%5D%5C%5C%5C%5C%5C%3D%5Csin%5E%7B-1%7D%28%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%29%5C%5C%5C%5C%3D%5Cfrac%7B%5Cpi%7D%7B3%7D)
And,
from part b
Therefore, the linear approximation at
is,
![f(x)=f'(A).(x-A)+f(A)\\\\=f'(\frac{\pi}{4}).(x-\frac{\pi}{4})+f(\frac{\pi}{4})\\\\=\sqrt{3}.[x-\frac{\pi}{4}]+\frac{\pi}{3}](https://tex.z-dn.net/?f=f%28x%29%3Df%27%28A%29.%28x-A%29%2Bf%28A%29%5C%5C%5C%5C%3Df%27%28%5Cfrac%7B%5Cpi%7D%7B4%7D%29.%28x-%5Cfrac%7B%5Cpi%7D%7B4%7D%29%2Bf%28%5Cfrac%7B%5Cpi%7D%7B4%7D%29%5C%5C%5C%5C%3D%5Csqrt%7B3%7D.%5Bx-%5Cfrac%7B%5Cpi%7D%7B4%7D%5D%2B%5Cfrac%7B%5Cpi%7D%7B3%7D)
d)
Use part (c), when
, B is approximately,
![B=f(46°)=\sqrt{3}[46°-\frac{\pi}{4}]+\frac{\pi}{3}\\\\=\sqrt{3}(1°)+\frac{\pi}{3}\\\\=61.732°](https://tex.z-dn.net/?f=B%3Df%2846%C2%B0%29%3D%5Csqrt%7B3%7D%5B46%C2%B0-%5Cfrac%7B%5Cpi%7D%7B4%7D%5D%2B%5Cfrac%7B%5Cpi%7D%7B3%7D%5C%5C%5C%5C%3D%5Csqrt%7B3%7D%281%C2%B0%29%2B%5Cfrac%7B%5Cpi%7D%7B3%7D%5C%5C%5C%5C%3D61.732%C2%B0)
You can tell that a line is parallel if the lines can go on forever without crossing or intersecting. A line is perpendicular when the lines intersect at a right angle. If the slopes are either equal or negative reciprocals, they cannot be parallel or perpendicular.
Hope this helps you!
1.8x59 is 472
8(59)
2.9x84 is 756
9(84)
3.6x78 is 468
6(78)
4.7x96 is 672
7(96)
72.50 is rounded and the answer to this question