
I think this is what you want? When multiplying with exponents, you either add or multiply the exponents.
When you multiply the exponent:
(x²)³ = 
= 9
When you add the exponents:
(x²)(x³) = 
(x²)(x²) = 

Answer:
Step-by-step explanation:
solve for x
note=anything you do on the other side of the equation you have to do inverse operation
-5x+10=-5
we have to move the ten on the -5 side so we do inverse operation
-5-10=-15
5x=-15
now we have to get the 5 by itself so what we do is inverse operation so we divide
-15/5
x=-3
The term that best describes the part of the area of a circle formed by an arc and two radii which intersect the endpoints of the arc are the sector of a circle. The correct answer is A.
Answer:
cos(θ)
Step-by-step explanation:
Para una función f(x), la derivada es el límite de
h
f(x+h)−f(x)
, ya que h va a 0, si ese límite existe.
dθ
d
(sin(θ))=(
h→0
lim
h
sin(θ+h)−sin(θ)
)
Usa la fórmula de suma para el seno.
h→0
lim
h
sin(h+θ)−sin(θ)
Simplifica sin(θ).
h→0
lim
h
sin(θ)(cos(h)−1)+cos(θ)sin(h)
Reescribe el límite.
(
h→0
lim
sin(θ))(
h→0
lim
h
cos(h)−1
)+(
h→0
lim
cos(θ))(
h→0
lim
h
sin(h)
)
Usa el hecho de que θ es una constante al calcular límites, ya que h va a 0.
sin(θ)(
h→0
lim
h
cos(h)−1
)+cos(θ)(
h→0
lim
h
sin(h)
)
El límite lim
θ→0
θ
sin(θ)
es 1.
sin(θ)(
h→0
lim
h
cos(h)−1
)+cos(θ)
Para calcular el límite lim
h→0
h
cos(h)−1
, primero multiplique el numerador y denominador por cos(h)+1.
(
h→0
lim
h
cos(h)−1
)=(
h→0
lim
h(cos(h)+1)
(cos(h)−1)(cos(h)+1)
)
Multiplica cos(h)+1 por cos(h)−1.
h→0
lim
h(cos(h)+1)
(cos(h))
2
−1
Usa la identidad pitagórica.
h→0
lim
−
h(cos(h)+1)
(sin(h))
2
Reescribe el límite.
(
h→0
lim
−
h
sin(h)
)(
h→0
lim
cos(h)+1
sin(h)
)
El límite lim
θ→0
θ
sin(θ)
es 1.
−(
h→0
lim
cos(h)+1
sin(h)
)
Usa el hecho de que
cos(h)+1
sin(h)
es un valor continuo en 0.
(
h→0
lim
cos(h)+1
sin(h)
)=0
Sustituye el valor 0 en la expresión sin(θ)(lim
h→0
h
cos(h)−1
)+cos(θ).
cos(θ)
Answer:
POISSON DISTRIBUTION
Step-by-step explanation:
When dealing with the number of occurrences of an event over a specified interval of time or space, the poisson distribution is often useful.
Poisson distribution is applicable if:
The probability of the occurrence of the event is the same for any two intervals of equal length.
The occurrence or nonoccurrence of the event in any interval is independent of the occurrence or nonoccurrence in any other interval.
The probability that two or more events will occur in an interval approaches zero as the interval becomes smaller.
Therefore, the appropriate probability distribution is POISSON PROBABILITY DISTRIBUTION.